New Perspective on the Interaction Behavior Between Riboflavin and β Lactoglobulin-β Casein Complex by Biophysical Techniques

Haug, A., Høstmark, A. T., & Harstad, O. M. (2007). Bovine milk in human nutrition–a review. Lipids in Health and Disease, 6(1), 1–16.

Article  Google Scholar 

Korhonen, H. J. (2011) Bioactive milk proteins, peptides and lipids and other functional components derived from milk and bovine colostrum. Functional foods: Elsevier, 471–511.

Lin, T., Meletharayil, G., Kapoor, R., & Abbaspourrad, A. (2021). Bioactives in bovine milk: chemistry, technology, and applications. Nutrition Reviews, 79, 48–69.

Article  PubMed  PubMed Central  Google Scholar 

Santos, D. I., Saraiva, J. M. A., Vicente, A. A., Moldão-Martins, M. (2019) Methods for determining bioavailability and bioaccessibility of bioactive compounds and nutrients. Innovative thermal and non-thermal processing, bioaccessibility and bioavailability of nutrients and bioactive compounds: Elsevier, 23–54.

Høst, A. (1994). Cow’s milk protein allergy and intolerance in infancy some clinical, epidemiological and immunological aspects. Pediatric Allergy and Immunology, 5(S6), 5–36.

Article  Google Scholar 

Subramani, I. G., Perumal, V., Gopinath, S. C., Mohamed, N. M., Ovinis, M., & Sze, L. L. (2021). 1, 1’-Carbonyldiimidazole-copper nanoflower enhanced collapsible laser scribed graphene engraved microgap capacitive aptasensor for the detection of milk allergen. Scientific Reports, 11(1), 1–12.

Article  Google Scholar 

Zepeda-Ortega, B., Goh, A., Xepapadaki, P., Sprikkelman, A., Nicolaou, N., & Hernandez, R. E. H., et al. (2021). Strategies and future opportunities for the prevention, diagnosis, and management of cow milk allergy. Frontiers in Immunology, 12, 1877.

Article  Google Scholar 

Marcone, S., Belton, O., & Fitzgerald, D. J. (2017). Milk‐derived bioactive peptides and their health promoting effects: a potential role in atherosclerosis. British Journal of Clinical Pharmacology, 83(1), 152–162.

Article  CAS  PubMed  Google Scholar 

Wong, D. W., Camirand, W. M., Pavlath, A. E., Parris, N., & Friedman, M. (1996). Structures and functionalities of milk proteins. Critical Reviews in Food Science & Nutrition. 36(8), 807–844.

Article  CAS  Google Scholar 

Truswell, A. (2005). The A2 milk case: a critical review. European Journal of Clinical Nutrition, 59(5), 623–631.

Article  CAS  PubMed  Google Scholar 

Mayer, H. K., Lenz, K., & Halbauer, E.-M. (2021). “A2 milk” authentication using isoelectric focusing and different PCR techniques. Food Research International, 147, 110523.

Article  CAS  PubMed  Google Scholar 

McLachlan, C. (2001). β-casein A1, ischaemic heart disease mortality, and other illnesses. Medical Hypotheses, 56(2), 262–272.

Article  CAS  PubMed  Google Scholar 

Thakur, N., Chauhan, G., Mishra, B., Mendiratta, S., Pattanaik, A., & Singh, T. U., et al. (2020). Comparative evaluation of feeding effects of A1 and A2 cow milk derived casein hydrolysates in diabetic model of rats. Journal of Functional Foods, 75, 104272.

Article  CAS  Google Scholar 

Fiocchi, A., Bognanni, A., Brożek, J., Ebisawa, M., Schünemann, H., & Ansotegui, I. J., et al. (2022). World Allergy Organization (WAO) diagnosis and rationale for action against cow’s milk allergy (dracma) guidelines update–I–Plan and definitions. World Allergy Organisation Journal. 15(1), 100609.

Article  Google Scholar 

Hufnagl, K., Ghosh, D., Wagner, S., Fiocchi, A., Dahdah, L., & Bianchini, R., et al. (2018). Retinoic acid prevents immunogenicity of milk lipocalin Bos d 5 through binding to its immunodominant T-cell epitope. Scientific Reports, 8(1), 1–12.

Article  CAS  Google Scholar 

Afify, S. M., Pali-Schöll, I., Hufnagl, K., Hofstetter, G., El-Bassuoni, M. A.-R., & Roth-Walter, F., et al. (2021). Bovine beta-lactoglobulin cross-protects against pollen allergies in an innate manner in BALB/c mice: Potential model for the farm effect. Frontiers in Immunology, 12, 176.

Article  Google Scholar 

Roth-Walter, F., Pacios, L. F., Gomez-Casado, C., Hofstetter, G., Roth, G. A., & Singer, J., et al. (2014). The major cow milk allergen Bos d 5 manipulates T-helper cells depending on its load with siderophore-bound iron. PloS ONE, 9(8), e104803.

Article  PubMed  PubMed Central  Google Scholar 

Loss, G., Apprich, S., Waser, M., Kneifel, W., Genuneit, J., & Büchele, G., et al. (2011). The protective effect of farm milk consumption on childhood asthma and atopy: the GABRIELA study. Journal of Allergy and Clinical Immunology, 128(4), 766–73.e4.

Article  PubMed  Google Scholar 

Roth-Walter, F., Afify, S. M., Pacios, L. F., Blokhuis, B. R., Redegeld, F., & Regner, A., et al. (2021). Cow’s milk protein β-lactoglobulin confers resilience against allergy by targeting complexed iron into immune cells. Journal of Allergy and Clinical Immunology, 147(1), 321–34.e4.

Article  CAS  PubMed  Google Scholar 

Considine, T., Flanagan, J., Loveday, S.M., Ellis, A. (2020) Interaction between milk proteins and micronutrients. Milk proteins: Elsevier, 537–571.

Plantone, D., Pardini, M., & Rinaldi, G. (2021). Riboflavin in neurological diseases: a narrative review. Clinical Drug Investigation, 41(6), 513–527.

Article  CAS  PubMed  Google Scholar 

You, J., Pan, X., Yang, C., Du, Y., Osire, T., & Yang, T., et al. (2021). Microbial production of riboflavin: biotechnological advances and perspectives. Metabolic Engineering, 68, 46–58.

Article  CAS  PubMed  Google Scholar 

Zhao, G., Dong, F., Lao, X., & Zheng, H. (2021). Strategies to increase the production of biosynthetic riboflavin. Molecular Biotechnology, 63(10), 909–918.

Article  CAS  PubMed  Google Scholar 

Lei, J., Xin, C., Xiao, W., Chen, W., & Song, Z. (2021). The promise of endogenous and exogenous riboflavin in anti-infection. Virulence., 12(1), 2314–2326.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Murakami, K., Miyake, Y., Sasaki, S., Tanaka, K., Fukushima, W., & Kiyohara, C., et al. (2010). Dietary intake of folate, vitamin B6, vitamin B12 and riboflavin and risk of Parkinson’s disease: a case–control study in Japan. British Journal of Nutrition, 104(5), 757–764.

Article  CAS  PubMed  Google Scholar 

Li, D., Zhu, J., Jin, J., & Yao, X. (2007). Studies on the binding of nevadensin to human serum albumin by molecular spectroscopy and modeling. Journal of Molecular Structure, 846(1-3), 34–41.

Article  CAS  Google Scholar 

Zhao, R., Qin, X., & Zhong, J. (2021). Interaction between curcumin and β-Casein: multi-spectroscopic and molecular dynamics simulation methods. Molecules., 26(16), 5092.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Al-Shabib, N. A., Khan, J. M., Malik, A., Alsenaidy, M. A., Rehman, M. T., & AlAjmi, M. F., et al. (2018). Molecular insight into binding behavior of polyphenol (rutin) with beta lactoglobulin: spectroscopic, molecular docking and MD simulation studies. Journal of Molecular Liquids, 269, 511–520.

Article  CAS  Google Scholar 

Moeiniafshari, A.-A., Zarrabi, A., & Bordbar, A.-K. (2015). Exploring the interaction of naringenin with bovine beta-casein nanoparticles using spectroscopy. Food Hydrocolloids, 51, 1–6.

Article  CAS  Google Scholar 

Hou, H.-N., Qi, Z.-D., OuYang, Y.-W., Liao, F.-L., Zhang, Y., & Liu, Y. (2008). Studies on interaction between Vitamin B12 and human serum albumin. Journal of Pharmaceutical and Biomedical Analysis, 47(1), 134–139.

Article  CAS  PubMed  Google Scholar 

Li, Y., He, W., Liu, J., Sheng, F., Hu, Z., & Chen, X. (2005). Binding of the bioactive component jatrorrhizine to human serum albumin. Biochimica et Biophysica Acta (BBA)-General Subjects, 1722(1), 15–21.

Article  CAS  PubMed  Google Scholar 

Aprodu, I., Ursache, F.-M., Turturică, M., Râpeanu, G., & Stănciuc, N. (2017). Thermal stability of the complex formed between carotenoids from sea buckthorn (Hippophae rhamnoides L.) and bovine β-lactoglobulin. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 173, 562–571.

Article  CAS  PubMed  Google Scholar 

Jones, G. A., & Bradshaw, D. S. (2019). Resonance energy transfer: from fundamental theory to recent applications. Frontiers in Physics, 7, 100.

Article  Google Scholar 

Yang, G., Liu, Y., Teng, J., & Zhao, C.-X. (2021). FRET ratiometric nanoprobes for nanoparticle monitoring. Biosensors, 11(12), 505.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pimsin, N., Kongsanan, N., Keawprom, C., Sricharoen, P., Nuengmatcha, P., & Oh, W.-C., et al. (2021). Ultratrace detection of nickel (II) ions in water samples using dimethylglyoxime-doped GQDs as the induced metal complex nanoparticles by a resonance light scattering sensor. ACS Omega, 6(23), 14796–14805.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chaturvedi, S. K., Ahmad, E., Khan, J. M., Alam, P., Ishtikhar, M., & Khan, R. H. (2015). Elucidating the interaction of limonene with bovine serum albumin: a multi-technique approach. Molecular BioSystems, 11(1), 307–316.

Article  CAS  PubMed  Google Scholar 

Zhang, H.-X., Huang, X., & Zhang, M. (2008). Thermodynamic studies on the interaction of dioxopromethazine to β-cyclodextrin and bovine serum albumin. Journal of Fluorescence, 18(3), 753–760.

Article  CAS  PubMed  Google Scholar 

Jones, C. (2021). Wavelength calibration uncertainty in protein circular dichroism data bank spectra. Applied Spectroscopy, 75(9), 1207–1211.

Article  CAS  PubMed  Google Scholar 

Ruzza, P., Honisch, C., Hussain, R., & Siligardi, G. (2021). Free radical generation in Far-UV synchrotron radiation circular dichroism assays—protein and buffer composition contribution. International Journal of Molecular Sciences, 22(21), 11325.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ferraris, S., Cazzola, M., Peretti, V., Stella, B., & Spriano, S. (2018). Zeta potential measurements on solid surfaces for in vitro b

留言 (0)

沒有登入
gif