Nanomaterials as drug delivery agents for overcoming the blood-brain barrier: A comprehensive review

M. Bentivoglio, K. Kristensson. Tryps and trips: cell trafficking across the 100-year-old blood-brain barrier. TRENDS IN NEUROSCIENCES 37 (2014) 325-333. https://doi.org/10.1016/j.tins.2014.03.007 .

R. Daneman, A. Prat. The blood-brain barrier. COLD SPRING HARBOR PERSPECTIVES IN BIOLOGY 7 (2015) a020412. https://doi.org/10.1101/cshperspect.a020412 .

C.M. Peppiatt, C. Howarth, P. Mobbs, D. Attwell. Bidirectional control of CNS capillary diameter by pericytes. NATURE 443 (2006) 700-704. https://doi.org/10.1038/nature05193 .

L. Gonzalez-Mariscal, R. Tapia, D. Chamorro. Crosstalk of tight junction components with signaling pathways. BIOCHIMICA ET BIOPHYSICA ACTA 1778 (2008) 729-756. https://doi.org/10.1016/j.bbamem.2007.08.018 .

Y. Zhou, Z. Peng, E.S. Seven, R.M. Leblanc. Crossing the blood-brain barrier with nanoparticles. JOURNAL OF CONTROLLED RELEASE 270 (2018) 290-303. https://doi.org/10.1016/j.jconrel.2017.12.015.

M. Habgood, J. Ek. Delivering drugs into the brain: barriers and possibilities. THERAPEUTIC DELIVERY 1 (2010) 483-488. https://doi.org/10.4155/tde.10.58 .

M. Kumar, P. Sharma, R. Maheshwari, M. Tekade, S.K. Shrivastava, R.K. Tekade, Beyond the Blood–Brain Barrier, in Nanotechnology-Based Targeted Drug Delivery Systems for Brain Tumors, Elsevier, Amsterdam, Netherlands, 2018, p. 397-437 9780128122181. https://doi.org/10.1016/b978-0-12-812218-1.00015-4 .

K.L. Chaichana, L. Pinheiro, H. Brem. Delivery of local therapeutics to the brain: working toward advancing treatment for malignant gliomas. THERAPEUTIC DELIVERY 6 (2015) 353-369. https://doi.org/10.4155/tde.14.114 .

V. Bourganis, O. Kammona, A. Alexopoulos, C. Kiparissides. Recent advances in carrier mediated nose-to-brain delivery of pharmaceutics. EUROPEAN JOURNAL OF PHARMACEUTICS AND BIOPHARMACEUTICS 128 (2018) 337-362. https://doi.org/10.1016/j.ejpb.2018.05.009 .

J.J. Lochhead, R.G. Thorne. Intranasal delivery of biologics to the central nervous system. ADVANCED DRUG DELIVERY REVIEWS 64 (2012) 614-628. https://doi.org/10.1016/j.addr.2011.11.002 .

M. Blanchette, D. Fortin, Blood-Brain Barrier Disruption in the Treatment of Brain Tumors, in Methods in Molecular Biology, Humana Press Inc.2011, p. 447-463. https://doi.org/10.1007/978-1-60761-938-3_23 .

A.B. Etame, R.J. Diaz, M.A. O'Reilly, C.A. Smith, T.G. Mainprize, K. Hynynen, J.T. Rutka. Enhanced delivery of gold nanoparticles with therapeutic potential into the brain using MRI-guided focused ultrasound. NANOMEDICINE: NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 8 (2012) 1133-1142. https://doi.org/10.1016/j.nano.2012.02.003 .

I. Posadas, S. Monteagudo, V. Cena. Nanoparticles for brain-specific drug and genetic material delivery, imaging and diagnosis. NANOMEDICINE (LOND) 11 (2016) 833-849. https://doi.org/10.2217/nnm.16.15 .

B.T. Hawkins, T.P. Davis. The blood-brain barrier/neurovascular unit in health and disease. PHARMACOLOGICAL REVIEWS 57 (2005) 173-185. https://doi.org/10.1124/pr.57.2.4 .

Y. Takakura, K.L. Audus, R.T. Borchardt. Blood-brain barrier: transport studies in isolated brain capillaries and in cultured brain endothelial cells. ADVANCES IN PHARMACOLOGY 22 (1991) 137-165. https://doi.org/10.1016/s1054-3589(08)60034-4 .

J.J. Rodriguez-Arellano, V. Parpura, R. Zorec, A. Verkhratsky. Astrocytes in physiological aging and Alzheimer's disease. NEUROSCIENCE 323 (2016) 170-182. https://doi.org/10.1016/j.neuroscience.2015.01.007 .

N.J. Abbott, L. Ronnback, E. Hansson. Astrocyte-endothelial interactions at the blood-brain barrier. NATURE REVIEWS NEUROSCIENCE 7 (2006) 41-53. https://doi.org/10.1038/nrn1824.

M.V. Sofroniew, H.V. Vinters. Astrocytes: biology and pathology. ACTA NEUROPATHOLOGICA 119 (2010) 7-35. https://doi.org/10.1007/s00401-009-0619-8 .

D. Shepro, N.M. Morel. Pericyte physiology. FASEB JOURNAL 7 (1993) 1031-1038. https://doi.org/10.1096/fasebj.7.11.8370472 .

C.H. Lai, K.H. Kuo. The critical component to establish in vitro BBB model: Pericyte. BRAIN RESEARCH REVIEWS 50 (2005) 258-265. https://doi.org/10.1016/j.brainresrev.2005.07.004 .

W.E. Thomas. Brain macrophages: on the role of pericytes and perivascular cells. BRAIN RESEARCH REVIEWS 31 (1999) 42-57. https://doi.org/10.1016/s0165-0173(99)00024-7 .

S. Liebner, C.J. Czupalla, H. Wolburg. Current concepts of blood-brain barrier development. INTERNATIONAL JOURNAL OF DEVELOPMENTAL BIOLOGY 55 (2011) 467-476. https://doi.org/10.1387/ijdb.103224sl .

A.J. Hansen. Effect of anoxia on ion distribution in the brain. PHYSIOLOGICAL REVIEWS 65 (1985) 101-148. https://doi.org/10.1152/physrev.1985.65.1.101 .

S.B. Hladky, M.A. Barrand. Elimination of substances from the brain parenchyma: efflux via perivascular pathways and via the blood-brain barrier. FLUIDS AND BARRIERS OF THE CNS 15 (2018) 30. https://doi.org/10.1186/s12987-018-0113-6 .

N.J. Abbott, A.A. Patabendige, D.E. Dolman, S.R. Yusof, D.J. Begley. Structure and function of the blood-brain barrier. NEUROBIOLOGY OF DISEASE 37 (2010) 13-25. https://doi.org/10.1016/j.nbd.2009.07.030 .

D.A. Lim, Y.C. Huang, A. Alvarez-Buylla. The adult neural stem cell niche: lessons for future neural cell replacement strategies. NEUROSURGERY CLINICS OF NORTH AMERICA 18 (2007) 81-92, ix. https://doi.org/10.1016/j.nec.2006.10.002 .

M.L. Hans, A.M. Lowman. Biodegradable nanoparticles for drug delivery and targeting. CURRENT OPINION IN SOLID STATE AND MATERIALS SCIENCE 6 (2002) 319-327. https://doi.org/10.1016/s1359-0286(02)00117-1 .

F.U. Din, W. Aman, I. Ullah, O.S. Qureshi, O. Mustapha, S. Shafique, A. Zeb. Effective use of nanocarriers as drug delivery systems for the treatment of selected tumors. INTERNATIONAL JOURNAL OF NANOMEDICINE 12 (2017) 7291-7309. https://doi.org/10.2147/IJN.S146315 .

N. Faisal, K. Kumar. Polymer and metal nanocomposites in biomedical applications. BIOINTERFACE RESEARCH IN APPLIED CHEMISTRY 7 (2017) 2286-2294. https://doi.org/https://doi.org/10.2017/Revised .

C.H. Choi, C.A. Alabi, P. Webster, M.E. Davis. Mechanism of active targeting in solid tumors with transferrin-containing gold nanoparticles. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA 107 (2010) 1235-1240. https://doi.org/10.1073/pnas.0914140107 .

D.T. Wiley, P. Webster, A. Gale, M.E. Davis. Transcytosis and brain uptake of transferrin-containing nanoparticles by tuning avidity to transferrin receptor. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA 110 (2013) 8662-8667. https://doi.org/10.1073/pnas.1307152110 .

S.D. Kong, J. Lee, S. Ramachandran, B.P. Eliceiri, V.I. Shubayev, R. Lal, S. Jin. Magnetic targeting of nanoparticles across the intact blood-brain barrier. JOURNAL OF CONTROLLED RELEASE 164 (2012) 49-57. https://doi.org/10.1016/j.jconrel.2012.09.021 .

B.S. Karmur, J. Philteos, A. Abbasian, B.E. Zacharia, N. Lipsman, V. Levin, S. Grossman, A. Mansouri. Blood-Brain Barrier Disruption in Neuro-Oncology: Strategies, Failures, and Challenges to Overcome. FRONTIERS IN ONCOLOGY 10 (2020) 563840. https://doi.org/10.3389/fonc.2020.563840 .

C.T. Lu, Y.Z. Zhao, H.L. Wong, J. Cai, L. Peng, X.Q. Tian. Current approaches to enhance CNS delivery of drugs across the brain barriers. INTERNATIONAL JOURNAL OF NANOMEDICINE 9 (2014) 2241-2257. https://doi.org/10.2147/IJN.S61288 .

S. Soni, R.K. Ruhela, B. Medhi. Nanomedicine in Central Nervous System (CNS) Disorders: A Present and Future Prospective. ADVANCED PHARMACEUTICAL BULLETIN 6 (2016) 319-335. https://doi.org/10.15171/apb.2016.044 .

S.G. Patel, M.D. Patel, A.J. Patel, M.B. Chougule, H. Choudhury, Solid Lipid Nanoparticles for Targeted Brain Drug Delivery, in Nanotechnology-Based Targeted Drug Delivery Systems for Brain Tumors, Elsevier2018, p. 191-244 9780128122181. https://doi.org/10.1016/b978-0-12-812218-1.00008-7 .

F. Juhairiyah, E.C.M. de Lange. Understanding Drug Delivery to the Brain Using Liposome-Based Strategies: Studies that Provide Mechanistic Insights Are Essential. AAPS JOURNAL 23 (2021) 114. https://doi.org/10.1208/s12248-021-00648-z .

A. Anand, A. Sugumaran, D. Narayanasamy. Brain targeted delivery of anticancer drugs: prospective approach using solid lipid nanoparticles. IET NANOBIOTECHNOL 13 (2019) 353-362. https://doi.org/10.1049/iet-nbt.2018.5322 .

E.E. N, M.O. M, A.M. H, A.A.-T. H. Nanostructured Lipid Carriers to Mediate Brain Delivery of Temazepam: Design and In Vivo Study. PHARMACEUTICS 12 (2020). https://doi.org/10.3390/pharmaceutics12050451 .

D. Ag Seleci, M. Seleci, J.-G. Walter, F. Stahl, T. Scheper. Niosomes as Nanoparticular Drug Carriers: Fundamentals and Recent Applications. JOURNAL OF NANOMATERIALS 2016 (2016) 1-13. https://doi.org/10.1155/2016/7372306 .

B.S. Pattni, V.V. Chupin, V.P. Torchilin. New Developments in Liposomal Drug Delivery. CHEMICAL REVIEWS 115 (2015) 10938-10966. https://doi.org/10.1021/acs.chemrev.5b00046 .

R.R. Sawant, V.P. Torchilin. Challenges in development of targeted liposomal therapeutics. AAPS JOURNAL 14 (2012) 303-315. https://doi.org/10.1208/s12248-012-9330-0 .

J. Ezzati Nazhad Dolatabadi, Y. Omidi. Solid lipid-based nanocarriers as efficient targeted drug and gene delivery systems. TRAC TRENDS IN ANALYTICAL CHEMISTRY 77 (2016) 100-108. https://doi.org/10.1016/j.trac.2015.12.016 .

A. Beloqui, M.A. Solinis, A. Rodriguez-Gascon, A.J. Almeida, V. Preat. Nanostructured lipid carriers: Promising drug delivery systems for future clinics. NANOMEDICINE: NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 12 (2016) 143-161. https://doi.org/10.1016/j.nano.2015.09.004 .

A.R. Jones, E.V. Shusta. Blood-brain barrier transport of therapeutics via receptor-mediation. PHARMACEUTICAL RESEARCH 24 (2007) 1759-1771. https://doi.org/10.1007/s11095-007-9379-0 .

R. Qiao, Q. Jia, S. Huwel, R. Xia, T. Liu, F. Gao, H.J. Galla, M. Gao. Receptor-mediated delivery of magnetic nanoparticles across the blood-brain barrier. ACS NANO 6 (2012) 3304-3310. https://doi.org/10.1021/nn300240p .

A.M. Hersh, S. Alomari, B.M. Tyler. Crossing the Blood-Brain Barrier: Advances in Nanoparticle Technology for Drug Delivery in Neuro-Oncology. INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES 23 (2022) 4153-4153. https://doi.org/10.3390/ijms23084153.

M. Liang, C. Gao, Y. Wang, W. Gong, S. Fu, L. Cui, Z. Zhou, X. Chu, Y. Zhang, Q. Liu, X. Zhao, B. Zhao, M. Yang, Z. Li, C. Yang, X. Xie, Y. Yang, C. Gao. Enhanced blood-brain barrier penetration and glioma therapy mediated by T7 peptide-modified low-density lipoprotein particles. DRUG DELIVERY 25 (2018) 1652-1663. https://doi.org/10.1080/10717544.2018.1494223 .

H. Gao. Progress and perspectives on targeting nanoparticles for brain drug delivery. ACTA PHARMACEUTICA SINICA B 6 (2016) 268-286. https://doi.org/10.1016/j.apsb.2016.05.013 .

J. Li, M. Zheng, O. Shimoni, W.A. Banks, A.I. Bush, J.R. Gamble, B. Shi. Development of Novel Therapeutics Targeting the Blood-Brain Barrier: From Barrier to Carrier. ADVANCED SCIENCE 8 (2021) e2101090. https://doi.org/10.1002/advs.202101090 .

A. Duro-Castano, D. Moreira Leite, J. Forth, Y. Deng, D. Matias, C. Noble Jesus, G. Battaglia. Designing peptide nanoparticles for efficient brain delivery. ADVANCED DRUG DELIVERY REVIEWS 160 (2020) 52-77. https://doi.org/10.1016/j.addr.2020.10.001 .

J. Li, L. Zhou, D. Ye, S. Huang, K. Shao, R. Huang, L. Han, Y. Liu, S. Liu, L. Ye, J. Lou, C. Jiang. Choline-derivate-modified nanoparticles for brain-targeting gene delivery. ADVANCED MATERIALS 23 (2011) 4516-4520. https://doi.org/10.1002/adma.201101899 .

L. Juillerat-Jeanneret. The targeted delivery of cancer drugs across the blood-brain barrier: chemical modifications of drugs or drug-nanoparticles? DRUG DISCOVERY TODAY 13 (2008) 1099-1106. https://doi.org/10.1016/j.drudis.2008.09.005 .

Y. Morofuji, S. Nakagawa. Drug Development for Central Nervous System Diseases Using In vitro Blood-brain Barrier Models and Drug Repositioning. CURRENT PHARMACEUTICAL DESIGN 26 (2020) 1466-1485. https://doi.org/10.2174/1381612826666200224112534 .

M. Malhotra, S. Prakash. Targeted Drug Delivery Across Blood-Brain-Barrier Using Cell Penetrating Peptides Tagged Nanoparticles. CURRENT NANOSCIENCE 7 (2011) 81-93. https://doi.org/10.2174/157341311794480336 .

V.M. Pulgar. Transcytosis to Cross the Blood Brain Barrier, New Advancements and Challenges. FRONTIERS IN NEUROSCIENCE 12 (2018) 1019. https://doi.org/10.3389/fnins.2018.01019 .

S.R. Elkin, A.M. Lakoduk, S.L. Schmid. Endocytic pathways and endosomal trafficking: a primer. WIENER MEDIZINISCHE WOCHENSCHRIFT 166 (2016) 196-204. https://doi.org/10.1007/s10354-016-0432-7 .

A.R. Khan, X. Yang, M. Fu, G. Zhai. Recent progress of drug nanoformulations targeting to brain. JOURNAL OF CONTROLLED RELEASE 291 (2018) 37-64. https://doi.org/10.1016/j.jconrel.2018.10.004 .

M. Azarmi, H. Maleki, N. Nikkam, H. Malekinejad. Transcellular brain drug delivery: A review on recent advancements. INTERNATIONAL JOURNAL OF PHARMACEUTICS 586 (2020) 119582. https://doi.org/10.1016/j.ijpharm.2020.119582 .

W.M. Pardridge, R.J. Boado, Y.-S. Kang. Vector-mediated delivery of a polyamide ("peptide") nucleic acid analogue through the blood-brain barrier in vivo. PHARMACOLOGY 92 (1995) 5592-5596. https://doi.org/10.1073%2Fpnas.92.12.5592 .

C. Bechara, S. Sagan. Cell-penetrating peptides: 20 years later, where do we stand? FEBS LETTERS 587 (2013) 1693-1702. https://doi.org/10.1016/j.febslet.2013.04.031 .

Y. Qin, H. Chen, W. Yuan, R. Kuai, Q. Zhang, F. Xie, L. Zhang, Z. Zhang, J. Liu, Q. He. Liposome formulated with TAT-modified cholesterol for enhancing the brain delivery. INTERNATIONAL JOURNAL OF PHARMACEUTICS 419 (2011) 85-95. https://doi.org/10.1016/j.ijpharm.2011.07.021 .

M. Malhotra, C. Tomaro-Duchesneau, S. Prakash. Synthesis of TAT peptide-tagged PEGylated chitosan nanoparticles for siRNA delivery targeting neurodegenerative diseases. BIOMATERIALS 34 (2013) 1270-1280. https://doi.org/10.1016/j.biomaterials.2012.10.013 .

Y. Cheng, Q. Dai, R.A. Morshed, X. Fan, M.L. Wegscheid, D.A. Wainwright, Y. Han, L. Zhang, B. Auffinger, A.L. Tobias, E. Rincon, B. Thaci, A.U. Ahmed, P.C. Warnke, C. He, M.S. Lesniak. Blood-brain barrier permeable gold nanoparticles: an efficient delivery platform for enhanced malignant glioma therapy and imaging. SMALL 10 (2014) 5137-5150. https://doi.org/10.1002/smll.201400654 .

Y. Qin, Q. Zhang, H. Chen, W. Yuan, R. Kuai, F. Xie, L. Zhang, X. Wang, Z. Zhang, J. Liu, Q. He. Comparison of four different peptides to enhance accumulation of liposomes into the brain. JOURNAL OF DRUG TARGETING 20 (2012) 235-245. https://doi.org/10.3109/1061186X.2011.639022

E. Koren, V.P. Torchilin. Cell-penetrating peptides: breaking through to the other side. TRENDS IN MOLECULAR MEDICINE 18 (2012) 385-393. https://doi.org/10.1016/j.molmed.2012.04.012 .

G. Sharma, A. Modgil, C. Sun, J. Singh. Grafting of cell-penetrating peptide to receptor-targeted liposomes improves their transfection efficiency and transport across blood-brain barrier model. JOURNAL OF PHARMACEUTICAL SCIENCES 101 (2012) 2468-2478. https://doi.org/10.1002/jps.23152 .

G. Sharma, A. Modgil, B. Layek, K. Arora, C. Sun, B. Law, J. Singh. Cell penetrating peptide tethered bi-ligand liposomes for delivery to brain in vivo: Biodistribution and transfection. JOURNAL OF CONTROLLED RELEASE 167 (2013) 1-10. https://doi.org/10.1016/j.jconrel.2013.01.016 .

Y. Liu, R. Ran, J. Chen, Q. Kuang, J. Tang, L. Mei, Q. Zhang, H. Gao, Z. Zhang, Q. He. Paclitaxel loaded liposomes decorated with a multifunctional tandem peptide for glioma targeting. BIOMATERIALS 35 (2014) 4835-4847. https://doi.org/10.1016/j.biomaterials.2014.02.031 .

B.R. Meade, S.F. Dowdy. Exogenous siRNA delivery using peptide transduction domains/cell penetrating peptides. ADVANCED DRUG DELIVERY REVIEWS 59 (2007) 134-140. https://doi.org/10.1016/j.addr.2007.03.004 .

M. Kristensen, H.M. Nielsen. Cell-penetrating peptides as tools to enhance non-injectable delivery of biopharmaceuticals. TISSUE BARRIERS 4 (2016) e1178369. https://doi.org/10.1080%2F21688370.2016.1178369 .

A.M. Api, D. Belsito, S. Bhatia, M. Bruze, P. Calow, M.L. Dagli, W. Dekant, A.D. Fryer, L. Kromidas, S. La Cava, J.F. Lalko, A. Lapczynski, D.C. Liebler, Y. Miyachi, V.T. Politano, G. Ritacco, D. Salvito, J. Shen, T.W. Schultz, I.G. Sipes, B. Wall, D.K. Wilcox. RIFM fragrance ingredient safety assessment, l-Borneol, CAS registry number 464-45-9. FOOD AND CHEMICAL TOXICOLOGY 82 Suppl (2015) S74-80. https://doi.org/10.1016/j.fct.2015.04.013 .

P. Toman, C.F. Lien, Z. Ahmad, S. Dietrich, J.R. Smith, Q. An, E. Molnar, G.J. Pilkington, D.C. Gorecki, J. Tsibouklis, E. Barbu. Nanoparticles of alkylglyceryl-dextran-graft-poly(lactic acid) for drug delivery to the brain: Preparation and in vitro investigation. ACTA BIOMATERIALIA 23 (2015) 250-262. https://doi.org/10.1016/j.actbio.2015.05.009 .

A.M. Grabrucker, R. Chhabra, D. Belletti, F. Forni, M.A. Vandelli, B. Ruozi, G. Tosi, Nanoparticles as blood–brain barrier permeable CNS targeted drug delivery systems, in The Blood Brain Barrier (BBB), Springer2014, p. 71-89 3662437864. https://doi.org/10.1007/7355_2013_22

T.W. Schultz, R.E. Carlson, M.T. Cronin, J.L. Hermens, R. Johnson, P.J. O'Brien, D.W. Roberts, A. Siraki, K.B. Wallace, G.D. Veith. A conceptual framework for predicting the toxicity of reactive chemicals: modeling soft electrophilicity. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 17 (2006) 413-428. https://doi.org/10.1080/10629360600884371.

K.A. Jacobson, Z.G. Gao. Adenosine receptors as therapeutic targets. NATURE REVIEWS DRUG DISCOVERY 5 (2006) 247-264. https://doi.org/10.1038/nrd1983.

S. Sachdeva, M. Gupta. Adenosine and its receptors as therapeutic targets: An overview. SAUDI PHARMACEUTICAL JOURNAL 21 (2013) 245-253. https://doi.org/10.1016/j.jsps.2012.05.011.

A.J. Carman, J.H. Mills, A. Krenz, D.G. Kim, M.S. Bynoe. Adenosine receptor signaling modulates permeability of the blood-brain barrier. JOURNAL OF NEUROSCIENCE 31 (2011) 13272-13280. https://doi.org/10.1523/JNEUROSCI.3337-11.2011.

X. Gao, J. Qian, S. Zheng, Y. Changyi, J. Zhang, S. Ju, J. Zhu, C. Li. Overcoming the blood-brain barrier for delivering drugs into the brain by using adenosine receptor nanoagonist. ACS NANO 8 (2014) 3678-3689. https://doi.org/10.1021/nn5003375.

W. Liang, W. Xu, J. Zhu, Y. Zhu, Q. Gu, Y. Li, C. Guo, Y. Huang, J. Yu, W. Wang, Y. Hu, Y. Zhao, B. Han, W. Bei, J. Guo. Ginkgo biloba extract improves brain uptake of ginsenosides by increasing blood-brain barrier permeability via activating A1 adenosine receptor signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 246 (2020) 112243. https://doi.org/10.1016/j.jep.2019.112243.

Z. Zhao, A. Ukidve, J. Kim, S. Mitragotri. Targeting Strategies for Tissue-Specific Drug Delivery. CELL 181 (2020) 151-167. https://doi.org/10.1016/j.cell.2020.02.001.

J. Park, Y. Zhang, N. Vykhodtseva, F.A. Jolesz, N.J. McDannold. The kinetics of blood brain barrier permeability and targeted doxorubicin delivery into brain induced by focused ultrasound. JOURNAL OF CONTROLLED RELEASE 162 (2012) 134-142. https://doi.org/10.1016/j.jconrel.2012.06.012.

M. Aryal, K. Fischer, C. Gentile, S. Gitto, Y.Z. Zhang, N. McDannold. Effects on P-Glycoprotein Expression after Blood-Brain Barrier Disruption Using Focused Ultrasound and Microbubbles. PLOS ONE 12 (2017) e0166061. https://doi.org/10.1371/journal.pone.0166061 .

H.L. Liu, M.Y. Hua, H.W. Yang, C.Y. Huang, P.C. Chu, J.S. Wu, I.C. Tseng, J.J. Wang, T.C. Yen, P.Y. Chen, K.C. Wei. Magnetic resonance monitoring of focused ultrasound/magnetic nanoparticle targeting delivery of therapeutic agents to the brain. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA 107 (2010) 15205-15210. https://doi.org/10.1073/pnas.1003388107.

M. Aryal, N. Vykhodtseva, Y.Z. Zhang, N. McDannold. Multiple sessions of liposomal doxorubicin delivery via focused ultrasound mediated blood-brain barrier disruption: a safety study. JOURNAL OF CONTROLLED RELEASE 204 (2015) 60-69. https://doi.org/10.1016/j.jconrel.2015.02.033.

H. Chen, C.C. Chen, C. Acosta, S.Y. Wu, T. Sun, E.E. Konofagou. A new brain drug delivery strategy: focused ultrasound-enhanced intranasal drug delivery. PLOS ONE 9 (2014) e108880. https://doi.org/10.1371/journal.pone.0108880.

Y. Meng, C.B. Pople, H. Lea-Banks, A. Abrahao, B. Davidson, S. Suppiah, L.M. Vecchio, N. Samuel, F. Mahmud, K. Hynynen, C. Hamani, N. Lipsman. Safety and efficacy of focused ultrasound induced blood-brain barrier opening, an integrative review of animal and human studies. JOURNAL OF CONTROLLED RELEASE 309 (2019) 25-36. https://doi.org/10.1016/j.jconrel.2019.07.023.

Q.Z. Zhang, L.S. Zha, Y. Zhang, W.M. Jiang, W. Lu, Z.Q. Shi, X.G. Jiang, S.K. Fu. The brain targeting efficiency following nasally applied MPEG-PLA nanoparticles in rats. JOURNAL OF DRUG TARGETING 14 (2006) 281-290. https://doi.org/10.1080/10611860600721051.

X. Zheng, C. Zhang, Q. Guo, X. Wan, X. Shao, Q. Liu, Q. Zhang. Dual-functional nanoparticles for precise drug delivery to Alzheimer's disease lesions: Targeting mechanisms, pharmacodynamics and safety. INTERNATIONAL JOURNAL OF PHARMACEUTICS 525 (2017) 237-248. https://doi.org/10.1016/j.ijpharm.2017.04.033.

Q. Zhang, X. Jiang, W. Jiang, W. Lu, L. Su, Z. Shi. Preparation of nimodipine-loaded microemulsion for intranasal delivery and evaluation on the targeting efficiency to the brain. INTERNATIONAL JOURNAL OF PHARMACEUTICS 275 (2004) 85-96. https://doi.org/10.1016/j.ijpharm.2004.01.039.

X. Zheng, X. Shao, C. Zhang, Y. Tan, Q. Liu, X. Wan, Q. Zhang, S. Xu, X. Jiang. Intranasal H102 Peptide-Loaded Liposomes for Brain Delivery to Treat Alzheimer's Disease. PHARMACEUTICAL RESEARCH 32 (2015) 3837-3849. https://doi.org/10.1007/s11095-015-1744-9.

Y. Zorkina, O. Abramova, V. Ushakova, A. Morozova, E. Zubkov, M. Valikhov, P. Melnikov, A. Majouga, V. Chekhonin. Nano Carrier Drug Delivery Systems for the Treatment of Neuropsychiatric Disorders: Advantages and Limitations. MOLECULES 25 (2020) 5294. https://doi.org/10.3390/molecules25225294.

F. Tameire, Verginadis, II, C. Koumenis. Cell intrinsic and extrinsic activators of the unfolded protein response in cancer: Mechanisms and targets for therapy. SEMINARS IN CANCER BIOLOGY 33 (2015) 3-15. https://doi.org/10.1016/j.semcancer.2015.04.002.

A.O. Elzoghby, M.M. Abd-Elwakil, K. Abd-Elsalam, M.T. Elsayed, Y. Hashem, O. Mohamed. Natural Polymeric Nanoparticles for Brain-Targeting: Implications on Drug and Gene Delivery. CURRENT PHARMACEUTICAL DESIGN 22 (2016) 3305-3323. https://doi.org/10.2174/1381612822666160204120829.

H. Wu, K. Hu, X. Jiang. From nose to brain: understanding transport capacity and transport rate of drugs. EXPERT OPINION ON DRUG DELIVERY 5 (2008) 1159-1168. https://doi.org/10.1517/17425247.5.10.1159.

X. Gao, B. Wu, Q. Zhang, J. Chen, J. Zhu, W. Zhang, Z. Rong, H. Chen, X. Jiang. Brain delivery of vasoactive intestinal peptide enhanced with the nanoparticles conjugated with wheat germ agglutinin following intranasal administration. JOURNAL OF CONTROLLED RELEASE 121 (2007) 156-167. https://doi.org/10.1016/j.jconrel.2007.05.026.

Q. Liu, Y. Shen, J. Chen, X. Gao, C. Feng, L. Wang, Q. Zhang, X. Jiang. Nose-to-brain transport pathways of wheat germ agglutinin conjugated PEG-PLA nanoparticles. PHARMACEUTICAL RESEARCH 29 (2012) 546-558. https://doi.org/10.1007/s11095-011-0641-0.

Z. Wen, Z. Yan, K. Hu, Z. Pang, X. Cheng, L. Guo, Q. Zhang, X. Jiang, L. Fang, R. Lai. Odorranalectin-conjugated nanoparticles: preparation, brain delivery and pharmacodynamic study on Parkinson's disease following intranasal administration. JOURNAL OF CONTROLLED RELEASE 151 (2011) 131-138. https://doi.org/10.1016/j.jconrel.2011.02.022.

H. Wu, J. Li, Q. Zhang, X. Yan, L. Guo, X. Gao, M. Qiu, X. Jiang, R. Lai, H. Chen. A novel small Odorranalectin-bearing cubosomes: preparation, brain delivery and pharmacodynamic study on amyloid-beta(2)(5)(-)(3)(5)-treated rats following intranasal administration. EUROPEAN JOURNAL OF PHARMACEUTICS AND BIOPHARMACEUTICS 80 (2012) 368-378. https://doi.org/10.1016/j.ejpb.2011.10.012.

S. Jha, D. Mishra. Evaluation of Brain Targeting Potential of Zolmitriptan Mucoadhesive Nanoparticles for Intranasal Drug Delivery. PHARMACEUTICAL NANOTECHNOLOGY 10 (2022) 113-124. https://doi.org/10.2174/2211738510666220303160414.

V. Soni, V. Pandey, S. Asati, P. Jain, R.K. Tekade, Design and Fabrication of Brain-Targeted Drug Delivery, in Basic Fundamentals of Drug Delivery, Elsevier2019, p. 539-593 9780128179093. https://doi.org/10.1016/b978-0-12-817909-3.00014-5.

A.M. Hersh, S. Alomari, B.M. Tyler. Crossing the blood-brain barrier: advances in nanoparticle technology for drug delivery in neuro-oncology. INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES 23 (2022) 4153.

R. Barbara, D. Belletti, F. Pederzoli, M. Masoni, J. Keller, A. Ballestrazzi, M.A. Vandelli, G. Tosi, A.M. Grabrucker. Novel Curcumin loaded nanoparticles engineered for Blood-Brain Barrier crossing and able to disrupt Abeta aggregates. INTERNATIONAL JOURNAL OF PHARMACEUTICS 526 (2017) 413-424. https://doi.org/10.1016/j.ijpharm.2017.05.015.

Y. Shen, B. Cao, N.R. Snyder, K.M. Woeppel, J.R. Eles, X.T. Cui. ROS responsive resveratrol delivery from LDLR peptide conjugated PLA-coated mesoporous silica nanoparticles across the blood-brain barrier. JOURNAL OF NANOBIOTECHNOLOGY 16 (2018) 13. https://doi.org/10.1186/s12951-018-0340-7.

J. Ahlawat, G. Guillama Barroso, S. Masoudi Asil, M. Alvarado, I. Armendariz, J. Bernal, X. Carabaza, S. Chavez, P. Cruz, V. Escalante, S. Estorga, D. Fernandez, C. Lozano, M. Marrufo, N. Ahmad, S. Negrete, K. Olvera, X. Parada, B. Portillo, A. Ramirez, R. Ramos, V. Rodriguez, P. Rojas, J. Romero, D. Suarez, G. Urueta, S. Viel, M. Narayan. Nanocarriers as Potential Drug Delivery Candidates for Overcoming the Blood-Brain Barrier: Challenges and Possibilities. ACS OMEGA 5 (2020) 12583-12595. https://doi.org/10.1021/acsomega.0c01592.

J. Wolfram, M. Zhu, Y. Yang, J. Shen, E. Gentile, D. Paolino, M. Fresta, G. Nie, C. Chen, H. Shen, M. Ferrari, Y. Zhao. Safety of Nanoparticles in Medicine. CURRENT DRUG TARGETS 16 (2015) 1671-1681. https://doi.org/10.2174/1389450115666140804124808.

W.M. Pardridge. Blood-Brain Barrier and Delivery of Protein and Gene Therapeutics to Brain. FRONTIERS IN AGING NEUROSCIENCE 11 (2019) 373. https://doi.org/10.3389/fnagi.2019.00373.

S. Lahkar, M.K. Das. Surface-modified polycaprolactone nanoparticles for the brain-targeted delivery of nevirapine. JOURNAL OF NANOPARTICLE RESEARCH 22 (2020) 109. https://doi.org/10.1007/s11051-020-04831-9.

A. Unnisa, N.H. Greig, M.A. Kamal. Nanotechnology-based gene therapy as a credible tool in the treatment of Alzheimer's disease. NEURAL REGENERATION RESEARCH 18 (2023) 2127-2133. https://doi.org/10.4103/1673-5374.369096.

T. Yang, B. Fogarty, B. LaForge, S. Aziz, T. Pham, L. Lai, S. Bai. Delivery of Small Interfering RNA to Inhibit Vascular Endothelial Growth Factor in Zebrafish Using Natural Brain Endothelia Cell-Secreted Exosome Nanovesicles for the Treatment of Brain Cancer. AAPS JOURNAL 19 (2017) 475-486. https://doi.org/10.1208/s12248-016-0015-y.

L. Bors, F. Erdő. Overcoming the Blood–Brain Barrier. Challenges and Tricks for CNS Drug Delivery. SCIENTIA PHARMACEUTICA 87 (2019) 6. https://doi.org/10.3390/scipharm87010006.

A. Bhowmik, S. Chakravarti, A. Ghosh, R. Shaw, S. Bhandary, S. Bhattacharyya, P.C. Sen, M.K. Ghosh. Anti-SSTR2 peptide based targeted delivery of potent PLGA encapsulated 3,3'-diindolylmethane nanoparticles through blood brain barrier prevents glioma progression. ONCOTARGET 8 (2017) 65339-65358. https://doi.org/10.18632/oncotarget.18689.

M. Saeedi, M. Eslamifar, K. Khezri, S.M. Dizaj. Applications of nanotechnology in drug delivery to the central nervous system. BIOMEDICINE AND PHARMACOTHERAPY 111 (2019) 666-675. https://doi.org/10.1016/j.biopha.2018.12.133.

R.S. Dhanikula, T. Hammady, P. Hildgen. On the mechanism and dynamics of uptake and permeation of polyether-copolyester dendrimers across an in vitro blood-brain barrier model. JOURNAL OF PHARMACEUTICAL SCIENCES 98 (2009) 3748-3760. https://doi.org/10.1002/jps.21669.

D. Furtado, M. Bjornmalm, S. Ayton, A.I. Bush, K. Kempe, F. Caruso. Overcoming the Blood-Brain Barrier: The Role of Nanomaterials in Treating Neurological Diseases. ADVANCED MATERIALS 30 (2018) e1801362. https://doi.org/10.1002/adma.201801362.

Y. Zhu, C. Liu, Z. Pang. Dendrimer-Based Drug Delivery Systems for Brain Targeting. BIOMOLECULES 9 (2019). https://doi.org/10.3390/biom9120790.

A.R. Menjoge, R.M. Kannan, D.A. Tomalia. Dendrimer-based drug and imaging conjugates: design considerations for nanomedical applications. DRUG DISCOVERY TODAY 15 (2010) 171-185. https://doi.org/10.1016/j.drudis.2010.01.009.

R. Duncan, L. Izzo. Dendrimer biocompatibility and toxicity. ADVANCED DRUG DELIVERY REVIEWS 57 (2005) 2215-2237. https://doi.org/10.1016/j.addr.2005.09.019.

V.P. Torchilin. Recent advances with liposomes as pharmaceutical carriers. NATURE REVIEWS DRUG DISCOVERY 4 (2005) 145-160. https://doi.org/10.1038/nrd1632.

D.B. Vieira, L.F. Gamarra. Getting into the brain: liposome-based strategies for effective drug delivery across the blood-brain barrier. INTERNATIONAL JOURNAL OF NANOMEDICINE 11 (2016) 5381-5414. https://doi.org/10.2147/IJN.S117210.

U.J. Kim, J. Park, H.J. Kim, M. Wada, D.L. Kaplan. Three-dimensional aqueous-derived biomaterial scaffolds from silk fibroin. BIOMATERIALS 26 (2005) 2775-2785. https://doi.org/10.1016/j.biomaterials.2004.07.044.

J. Akbari, M. Saeedi, K. Morteza-Semnani, S.S. Rostamkalaei, M. Asadi, K. Asare-Addo, A. Nokhodchi. The design of naproxen solid lipid nanoparticles to target skin layers. COLLOIDS AND SURFACES B: BIOINTERFACES 145 (2016) 626-633. https://doi.org/10.1016/j.colsurfb.2016.05.064.

H.R. Kelidari, M. Saeedi, J. Akbari, K. Morteza-Semnani, P. Gill, H. Valizadeh, A. Nokhodchi. Formulation optimization and in vitro skin penetration of spironolactone loaded solid lipid nanoparticles. COLLOIDS AND SURFACES B: BIOINTERFACES 128 (2015) 473-479. https://doi.org/10.1016/j.colsurfb.2015.02.046.

A.V. Kabanov, A.V. Levashov, V. Alakhov. Lipid modification of proteins and their membrane transport. PROTEIN ENGINEERING 3 (1989) 39-42. https://doi.org/10.1093/protein/3.1.39.

A. Singh, J. Kusunose, M.A. Phipps, F. Wang, L.M. Chen, C.F. Caskey. Guiding and monitoring focused ultrasound mediated blood-brain barrier opening in rats using power Doppler imaging and passive acoustic mapping. SCIENTIFIC REPORTS 12 (2022) 14758. https://doi.org/10.1038/s41598-022-18328-z.

C.M. Wilson, A. Magnaudeix, T. Naves, F. Vincent, F. Lalloue, M.O. Jauberteau. The Ins and Outs of Nanoparticle Technology in Neurodegenerative Diseases and Cancer. CURRENT DRUG METABOLISM 16 (2015) 609-632. https://doi.org/10.2174/1389200216666150812121902.

H. Kafa, J.T. Wang, N. Rubio, K. Venner, G. Anderson, E. Pach, B. Ballesteros, J.E. Preston, N.J. Abbott, K.T. Al-Jamal. The interaction of carbon nanotubes with an in vitro blood-brain barrier model and mouse brain in vivo. BIOMATERIALS 53 (2015) 437-452. https://doi.org/10.1016/j.biomaterials.2015.02.083.

S. Vardharajula, S.Z. Ali, P.M. Tiwari, E. Eroglu, K. Vig, V.A. Dennis, S.R. Singh. Functionalized carbon nanotubes: biomedical applications. INTERNATIONAL JOURNAL OF NANOMEDICINE 7 (2012) 5361-5374. https://doi.org/10.2147/IJN.S35832.

X. Ma, L. Zhong, H. Guo, Y. Wang, N. Gong, Y. Wang, J. Cai, X.J. Liang. Multiwalled Carbon Nanotubes Induced Hypotension by Regulating the Central Nervous System. ADVANCED FUNCTIONAL MATERIALS 28 (2018). https://doi.org/10.1002/adfm.201705479.

L.L. Rubin, D.E. Hall, S. Porter, K. Barbu, C. Cannon, H.C. Horner, M. Janatpour, C.W. Liaw, K. Manning, J. Morales, et al. A cell culture model of the blood-brain barrier. JOURNAL OF CELL BIOLOGY 115 (1991) 1725-1735. https://doi.org/10.1083/jcb.115.6.1725.

S.B. Pehlivan. Nanotechnology-based drug delivery systems for targeting, imaging and diagnosis of neurodegenerative diseases. PHARMACEUTICAL RESEARCH 30 (2013) 2499-2511. https://doi.org/10.1007/s11095-013-1156-7.

M. Bramini, D. Ye, A. Hallerbach, M. Nic Raghnaill, A. Salvati, C. Aberg, K.A. Dawson. Imaging approach to mechanistic study of nanoparticle interactions with the blood-brain barrier. ACS NANO 8 (2014) 4304-4312. https://doi.org/10.1021/nn5018523.

W.M. Pardridge. The blood-brain barrier: bottleneck in brain drug development. NEURORX 2 (2005) 3-14. https://doi.org/10.1602/neurorx.2.1.3.

S. Parveen, R. Misra, S.K. Sahoo. Nanoparticles: a boon to drug delivery, therapeutics, diagnostics and imaging. NANOMEDICINE: NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 8 (2012) 147-166. https://doi.org/10.1016/j.nano.2011.05.016.

J. Bicker, G. Alves, A. Fortuna, A. Falcao. Blood-brain barrier models and their relevance for a successful development of CNS drug delivery systems: a review. EUROPEAN JOURNAL OF PHARMACEUTICS AND BIOPHARMACEUTICS 87 (2014) 409-432. https://doi.org/10.1016/j.ejpb.2014.03.012.

E.S. Lippmann, S.M. Azarin, J.E. Kay, R.A. Nessler, H.K. Wilson, A. Al-Ahmad, S.P. Palecek, E.V. Shusta. Derivation of blood-brain barrier endothelial cells from human pluripotent stem cells. NATURE BIOTECHNOLOGY 30 (2012) 783-791. https://doi.org/10.1038/nbt.2247.

A. Patabendige, R.A. Skinner, N.J. Abbott. Establishment of a simplified in vitro porcine blood-brain barrier model with high transendothelial electrical resistance. BRAIN RESEARCH 1521 (2013) 1-15. https://doi.org/10.1016/j.brainres.2012.06.057.

Ü. Langel, Ü. Langel, Classes and applications of cell-penetrating peptides, in Cell-Penetrating Peptides, Springer2019, p. 29-82. https://doi.org/10.1007/978-981-13-8747-0.

S. Hanada, K. Fujioka, Y. Inoue, F. Kanaya, Y. Manome, K. Yamamoto. Cell-based in vitro blood-brain barrier model can rapidly evaluate nanoparticles' brain permeability in association with particle size and surface modification. INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES 15 (2014) 1812-1825. https://doi.org/10.3390/ijms15021812.

M. Mirahmad, R. Sabourian, M. Mahdavi, B. Larijani, M. Safavi. In vitro cell-based models of drug-induced hepatotoxicity screening: progress and limitation. DRUG METABOLISM REVIEWS 54 (2022) 161-193. https://doi.org/10.1080/03602532.2022.2064487.

M.A. Kaisar, R.K. Sajja, S. Prasad, V.V. Abhyankar, T. Liles, L. Cucullo. New experimental models of the blood-brain barrier for CNS drug discovery. EXPERT OPINION ON DRUG DISCOVERY 12 (2017) 89-103. https://doi.org/10.1080/17460441.2017.1253676.

F. Sivandzade, L. Cucullo. In-vitro blood-brain barrier modeling: A review of modern and fast-advancing technologies. JOURNAL OF CEREBRAL BLOOD FLOW AND METABOLISM 38 (2018) 1667-1681. https://doi.org/10.1177/0271678X18788769.

D. Huh, G.A. Hamilton, D.E. Ingber. From 3D cell culture to organs-on-chips. TRENDS IN CELL BIOLOGY 21 (2011) 745-754. https://doi.org/10.1016/j.tcb.2011.09.005.

R. Cecchelli, B. Dehouck, L. Descamps, L. Fenart, V.V. Buee-Scherrer, C. Duhem, S. Lundquist, M. Rentfel, G. Torpier, M.P. Dehouck. In vitro model for evaluating drug transport across the blood-brain barrier. ADVANCED DRUG DELIVERY REVIEWS 36 (1999) 165-178. https://doi.org/10.1016/s0169-409x(98)00083-0.

F. Baaijens, C. Bouten, N. Driessen. Modeling collagen remodeling. JOURNAL OF BIOMECHANICS 43 (2010) 166-175. https://doi.org/10.1016/j.jbiomech.2009.09.022.

Y. Yan, Y. Chen, Z. Liu, F. Cai, W. Niu, L. Song, H. Liang, Z. Su, B. Yu, F. Yan. Brain Delivery of Curcumin Through Low-Intensity Ultrasound-Induced Blood-Brain Barrier Opening via Lipid-PLGA Nanobubbles. INTERNATIONAL JOURNAL OF NANOMEDICINE 16 (2021) 7433-7447. https://doi.org/10.2147/IJN.S327737.

H.C. Helms, N.J. Abbott, M. Burek, R. Cecchelli, P.O. Couraud, M.A. Deli, C. Forster, H.J. Galla, I.A. Romero, E.V. Shusta, M.J. Stebbins, E. Vandenhaute, B. Weksler, B. Brodin. In vitro models of the blood-brain barrier: An overview of commonly used brain endothelial cell culture models and guidelines for their use. JOURNAL OF CEREBRAL BLOOD FLOW AND METABOLISM 36 (2016) 862-890. https://doi.org/10.1177/0271678X16630991.

Y. Shin, S. Han, J.S. Jeon, K. Yamamoto, I.K. Zervantonakis, R. Sudo, R.D. Kamm, S. Chung. Microfluidic assay for simultaneous culture of multiple cell types on surfaces or within hydrogels. NATURE PROTOCOLS 7 (2012) 1247-1259. https://doi.org/10.1038%2Fnprot.2012.051.

T.D. Brown, M. Nowak, A.V. Bayles, B. Prabhakarpandian, P. Karande, J. Lahann, M.E. Helgeson, S. Mitragotri. A microfluidic model of human brain (muHuB) for assessment of blood brain barrier. BIOENGINEERING & TRANSLATIONAL MEDICINE 4 (2019) e10126. https://doi.org/10.1002/btm2.10126.

N.J. Abbott. Blood-brain barrier structure and function and the challenges for CNS drug delivery. JOURNAL OF INHERITED METABOLIC DISEASE 36 (2013) 437-449. https://doi.org/10.1007/s10545-013-9608-0.

M.B. Esch, J.H. Sung, J. Yang, C. Yu, J. Yu, J.C. March, M.L. Shuler. On chip porous polymer membranes for integration of gastrointestinal tract epithelium with microfluidic 'body-on-a-chip' devices. BIOMEDICAL MICRODEVICES 14 (2012) 895-906. https://doi.org/10.1007/s10544-012-9669-0.

W. Zhang, A. Mehta, Z. Tong, L. Esser, N.H. Voelcker. Development of Polymeric Nanoparticles for Blood-Brain Barrier Transfer-Strategies and Challenges. ADVANCED SCIENCE 8 (2021) 2003937. https://doi.org/10.1002/advs.202003937.

D.M. Teleanu, I. Negut, V. Grumezescu, A.M. Grumezescu, R.I. Teleanu. Nanomaterials for Drug Delivery to the Central Nervous System. NANOMATERIALS (BASEL) 9 (2019). https://doi.org/10.3390/nano9030371.

A.E. Nel, L. Madler, D. Velegol, T. Xia, E.M. Hoek, P. Somasundaran, F. Klaessig, V. Castranova, M. Thompson. Understanding biophysicochemical interactions at the nano-bio interface. NATURE MATERIALS 8 (2009) 543-557. https://doi.org/10.1038/nmat2442.

S.B. Tiwari, M.M. Amiji. A review of nanocarrier-based CNS delivery systems. CURRENT DRUG DELIVERY 3 (2006) 219-232. https://doi.org/10.2174/156720106776359230.

G. Liu, P. Men, P.L. Harris, R.K. Rolston, G. Perry, M.A. Smith. Nanoparticle iron chelators: a new therapeutic approach in Alzheimer disease and other neurologic disorders associated with trace metal imbalance. NEUROSCIENCE LETTERS 406 (2006) 189-193. https://doi.org/10.1016/j.neulet.2006.07.020.

J. Kreuter. Influence of the surface properties on nanoparticle-mediated transport of drugs to the brain. JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY 4 (2004) 484-488. https://doi.org/10.1166/jnn.2003.077.

B. Hagenbuch, P.J. Meier. The superfamily of organic anion transporting polypeptides. BIOCHIMICA ET BIOPHYSICA ACTA 1609 (2003) 1-18. https://doi.org/10.1016/s0005-2736(02)00633-8.

L. Fenart, A. Casanova, B. Dehouck, C. Duhem, S. Slupek, R. Cecchelli, D. Betbeder. Evaluation of effect of charge and lipid coating on ability of 60-nm nanoparticles to cross an in vitro model of the blood-brain barrier. JOURNAL OF PHARMACOLOGY AND EXPERIMENTAL THERAPEUTICS 291 (1999) 1017-1022. https://doi.org/https://www.ncbi.nlm.nih.gov/pubmed/10565819.

G. Sahagun, S.A. Moore, M.N. Hart. Permeability of neutral vs. anionic dextrans in cultured brain microvascular endothelium. AMERICAN JOURNAL OF PHYSIOLOGY 259 (1990) H162-166. https://doi.org/10.1152/ajpheart.1990.259.1.H162.

P.R. Lockman, J.M. Koziara, R.J. Mumper, D.D. Allen. Nanoparticle surface charges alter blood-brain barrier integrity and permeability. JOURNAL OF DRUG TARGETING 12 (2004) 635-641. https://doi.org/10.1080/10611860400015936.

J.M. Koziara, P.R. Lockman, D.D. Allen, R.J. Mumper. The blood-brain barrier and brain drug delivery. JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY 6 (2006) 2712-2735. https://doi.org/10.1166/jnn.2006.441.

T.D. Brown, N. Habibi, D. Wu, J. Lahann, S. Mitragotri. Effect of Nanoparticle Composition, Size, Shape, and Stiffness on Penetration Across the Blood-Brain Barrier. ACS BIOMATERIALS SCIENCE & ENGINEERING 6 (2020) 4916-4928. https://doi.org/10.1021/acsbiomaterials.0c00743.

F. Re, M. Gregori, M. Masserini. Nanotechnology for neurodegenerative disorders. MATURITAS 73 (2012) 45-51. https://doi.org/10.1016/j.maturitas.2011.12.015.

M. Li, C. Du, N. Guo, Y. Teng, X. Meng, H. Sun, S. Li, P. Yu, H. Galons. Composition design and medical application of liposomes. EUROPEAN JOURNAL OF MEDICINAL CHEMISTRY 164 (2019) 640-653. https://doi.org/10.1016/j.ejmech.2019.01.007.

V.J. Muniswamy, N. Raval, P. Gondaliya, V. Tambe, K. Kalia, R.K. Tekade. 'Dendrimer-Cationized-Albumin' encrusted polymeric nanoparticle improves BBB penetration and anticancer activity of doxorubicin. INTERNATIONAL JOURNAL OF PHARMACEUTICS 555 (2019) 77-99. https://doi.org/10.1016/j.ijpharm.2018.11.035.

G. Rajakumar, X.-H. Zhang, T. Gomathi, S.-F. Wang, M. Azam Ansari, G. Mydhili, G. Nirmala, M.A. Alzohairy, I.-M. Chung. Current Use of Carbon-Based Materials for Biomedical Applications—A Prospective and Review. PROCESSES 8 (2020) 355. https://doi.org/10.3390/pr8030355.

X.Q. Zhang, X. Xu, N. Bertrand, E. Pridgen, A. Swami, O.C. Farokhzad. Interactions of nanomaterials and biological systems: Implications to personalized nanomedicine. ADVANCED DRUG DELIVERY REVIEWS 64 (2012) 1363-1384. https://doi.org/10.1016/j.addr.2012.08.005.

G. Tosi, J.T. Duskey, J. Kreuter. Nanoparticles as carriers for drug delivery of macromolecules across the blood-brain barrier. EXPERT OPINION ON DRUG DELIVERY 17 (2020) 23-32. https://doi.org/10.1080/17425247.2020.1698544.

E. Soderstjerna, P. Bauer, T. Cedervall, H. Abdshill, F. Johansson, U.E. Johansson. Silver and gold nanoparticles exposure to in vitro cultured retina--studies on nanoparticle internalization, apoptosis, oxidative stress, glial- and microglial activity. PLOS ONE 9 (2014) e105359. https://doi.org/10.1371/journal.pone.0105359.

J.R. Gee, J.N. Keller. Astrocytes: regulation of brain homeostasis via apolipoprotein E. THE INTERNATIONAL JOURNAL OF BIOCHEMISTRY & CELL BIOLOGY 37 (2005) 1145-1150. https://doi.org/10.1016/j.biocel.2004.10.004.

M.K. Gottipati, A.R. D'Amato, A.M. Ziemba, P.G. Popovich, R.J. Gilbert. TGFbeta3 is neuroprotective and alleviates the neurotoxic response induced by aligned poly-l-lactic acid fibers on naive and activated primary astrocytes. ACTA BIOMATERIALIA 117 (2020) 273-282. https://doi.org/10.1016/j.actbio.2020.09.057.

D. Soulet, S. Rivest. Polyamines play a critical role in the control of the innate immune response in the mouse central nervous system. JOURNAL OF CELL BIOLOGY 162 (2003) 257-268. https://doi.org/10.1083/jcb.200301097.

S.A. Abdelrahman, A.S. El-Shal, A.A. Abdelrahman, E.Z.H. Saleh, A.A. Mahmoud. Neuroprotective effects of quercetin on the cerebellum of zinc oxide nanoparticles (ZnoNps)-exposed rats. TISSUE BARRIERS 11 (2023) 2115273. https://doi.org/10.1080/21688370.2022.2115273.

K.F. Bing, G.P. Howles, Y. Qi, M.L. Palmeri, K.R. Nightingale. Blood-brain barrier (BBB) disruption using a diagnostic ultrasound scanner and Definity in Mice. ULTRASOUND IN MEDICINE AND BIOLOGY 35 (2009) 1298-1308. https://doi.org/10.1016/j.ultrasmedbio.2009.03.012.

C. Tapeinos, M. Battaglini, G. Ciofani. Advances in the design of solid lipid nanoparticles and nanostructured lipid carriers for targeting brain diseases. JOURNAL OF CONTROLLED RELEASE 264 (2017) 306-332. https://doi.org/10.1016/j.jconrel.2017.08.033.

P.M. Gosselin, R. Thibert, M. Preda, J.N. McMullen. Polymorphic properties of micronized carbamazepine produced by RESS. INTERNATIONAL JOURNAL OF PHARMACEUTICS 252 (2003) 225-233. https://doi.org/10.1016/s0378-5173(02)00649-x.

M.K. Satapathy, T.L. Yen, J.S. Jan, R.D. Tang, J.Y. Wang, R. Taliyan, C.H. Yang. Solid Lipid Nanoparticles (SLNs): An Advanced Drug Delivery System Targeting Brain through BBB. PHARMACEUTICS 13 (2021) 1183. https://doi.org/10.3390/pharmaceutics13081183.

A. O'Donnell, A. Moollan, S. Baneham, M. Ozgul, R.M. Pabari, D. Cox, B.P. Kirby, Z. Ramtoola. Intranasal and intravenous administration of octa-arginine modified poly(lactic-co-glycolic acid) nanoparticles facilitates central nervous system delivery of loperamide. JOURNAL OF PHARMACY AND PHARMACOLOGY 67 (2015) 525-536. https://doi.org/10.1111/jphp.12347.

T.B. Devkar, A.R. Tekade, K.R. Khandelwal. Surface engineered nanostructured lipid carriers for efficient nose to brain delivery of ondansetron HCl using Delonix regia gum as a natural mucoadhesive polymer. COLLOIDS AND SURFACES B: BIOINTERFACES 122 (2014) 143-150. https://doi.org/10.1016/j.colsurfb.2014.06.037.

C.H. Choi, J.E. Zuckerman, P. Webster, M.E. Davis. Targeting kidney mesangium by nanoparticles of defined size. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA 108 (2011) 6656-6661. https://doi.org/10.1073/pnas.1103573108.

J. Duan, Y. Yu, Y. Li, Y. Yu, Z. Sun. Cardiovascular toxicity evaluation of silica nanoparticles in endothelial cells and zebrafish model. BIOMATERIALS 34 (2013) 5853-5862. https://doi.org/10.1016/j.biomaterials.2013.04.032.

E. Barbu, E. Molnar, J. Tsibouklis, D.C. Gorecki. The potential for nanoparticle-based drug delivery to the brain: overcoming the blood-brain barrier. EXPERT OPINION ON DRUG DELIVERY 6 (2009) 553-565. https://doi.org/10.1517/17425240902939143.

J. Kreuter, S. Gelperina. Use of nanoparticles for cerebral cancer. TUMORI JOURNAL 94 (2008) 271-277. https://doi.org/10.1177/030089160809400220.

P. Simard, J.C. Leroux. In vivo evaluation of pH-sensitive polymer-based immunoliposomes targeting the CD33 antigen. MOLECULAR PHARMACEUTICS 7 (2010) 1098-1107. https://doi.org/10.1021/mp900261m.

C. Plank, B. Oberhauser, K. Mechtler, C. Koch, E. Wagner. The influence of endosome-disruptive peptides on gene transfer using synthetic virus-like gene transfer systems. JOURNAL OF BIOLOGICAL CHEMISTRY 269 (1994) 12918-12924. https://doi.org/10.1016/S0021-9258(18)99963-1.

A.K. Varkouhi, M. Scholte, G. Storm, H.J. Haisma. Endosomal escape pathways for delivery of biologicals. JOURNAL OF CONTROLLED RELEASE 151 (2011) 220-228. https://doi.org/10.1016/j.jconrel.2010.11.004.

P. Sapra, T.M. Allen. Ligand-targeted liposomal anticancer drugs. PROGRESS IN LIPID RESEARCH 42 (2003) 439-462. https://doi.org/10.1016/s0163-7827(03)00032-8.

G. Oberdorster. Safety assessment for nanotechnology and nanomedicine: concepts of nanotoxicology. JOURNAL OF INTERNAL MEDICINE 267 (2010) 89-105. https://doi.org/10.1111/j.1365-2796.2009.02187.x.

H.R. Jia, Y.X. Zhu, Q.Y. Duan, Z. Chen, F.G. Wu. Nanomaterials meet zebrafish: Toxicity evaluation and drug delivery applications. JOURNAL OF CONTROLLED RELEASE 311-312 (2019) 301-318. https://doi.org/10.1016/j.jconrel.2019.08.022.

M.G. Tirumala, P. Anchi, S. Raja, M. Rachamalla, C. Godugu. Novel Methods and Approaches for Safety Evaluation of Nanoparticle Formulations: A Focus Towards In Vitro Models and Adverse Outcome Pathways. FRONTIERS IN PHARMACOLOGY 12 (2021) 612659. https://doi.org/10.3389/fphar.2021.612659.

T.A. Faunce, J. White, K.I. Matthaei. Integrated research into the nanoparticle-protein corona: a new focus for safe, sustainable and equitable development of nanomedicines. NANOMEDICINE (LOND) 3 (2008) 859-866. https://doi.org/10.2217/17435889.3.6.859.

M.R.C. Marques, Q. Choo, M. Ashtikar, T.C. Rocha, S. Bremer-Hoffmann, M.G. Wacker. Nanomedicines - Tiny particles and big challenges. ADVANCED DRUG DELIVERY REVIEWS 151-152 (2019) 23-43. https://doi.org/10.1016/j.addr.2019.06.003.

C. von Roemeling, W. Jiang, C.K. Chan, I.L. Weissman, B.Y.S. Kim. Breaking Down the Barriers to Precision Cancer Nanomedicine. TRENDS IN BIOTECHNOLOGY 35 (2017) 159-171. https://doi.org/10.1016/j.tibtech.2016.07.006.

C. Oerlemans, W. Bult, M. Bos, G. Storm, J.F. Nijsen, W.E. Hennink. Polymeric micelles in anticancer therapy: targeting, imaging and triggered release. PHARMACEUTICAL RESEARCH 27 (2010) 2569-2589. https://doi.org/10.1007/s11095-010-0233-4.

X. Zhang, Y. Huang, S. Li. Nanomicellar carriers for targeted delivery of anticancer agents. THERAPEUTIC DELIVERY 5 (2014) 53-68. https://doi.org/10.4155/tde.13.135.

A. Quintana, E. Raczka, L. Piehler, I. Lee, A. Myc, I. Majoros, A.K. Patri, T. Thomas, J. Mule, J.R. Baker, Jr. Design and function of a dendrimer-based therapeutic nanodevice targeted to tumor cells through the folate receptor. PHARMACEUTICAL RESEARCH 19 (2002) 1310-1316. https://doi.org/10.1023/a:1020398624602.

S. Somani, C. Dufes. Applications of dendrimers for brain delivery and cancer therapy. NANOMEDICINE (LOND) 9 (2014) 2403-2414. https://doi.org/10.2217/nnm.14.130.

B. Dinesh, A. Bianco, C. Menard-Moyon. Designing multimodal carbon nanotubes by covalent multi-functionalization. NANOSCALE 8 (2016) 18596-18611. https://doi.org/10.1039/c6nr06728j.

Z. Chen, R. Mao, Y. Liu. Fullerenes for cancer diagnosis and therapy: preparation, biological and clinical perspectives. CURRENT DRUG METABOLISM 13 (2012) 1035-1045. https://doi.org/10.2174/138920012802850128.

J. Li, J.J. Zhu. Quantum dots for fluorescent biosensing and bio-imaging applications. ANALYST 138 (2013) 2506-2515. https://doi.org/10.1039/c3an36705c.

R. Datta, S.S. Jaitawat. Nanotechnology - The New Frontier of Medicine. MEDICAL JOURNAL ARMED FORCES INDIA 62 (2006) 263-268. https://doi.org/10.1016/S0377-1237(06)80016-X.

V. Sagar, S. Pilakka-Kanthikeel, R. Pottathil, S.K. Saxena, M. Nair. Towards nanomedicines for neuroAIDS. REVIEWS IN MEDICAL VIROLOGY 24 (2014) 103-124. https://doi.org/10.1002/rmv.1778.

E. Acosta. Bioavailability of nanoparticles in nutrient and nutraceutical delivery. CURRENT OPINION IN COLLOID & INTERFACE SCIENCE 14 (2009) 3-15.

留言 (0)

沒有登入
gif