Exosomal UMOD gene expression and urinary uromodulin level as early noninvasive diagnostic biomarkers for diabetic nephropathy in type 2 diabetic patients

Kim KS, Lee JS, Park JH, Lee EY, Moon JS, Lee SK, et al. Identification of novel biomarker for early detection of diabetic nephropathy. Biomedicines. 2021;9(5):457.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mizdrak M, Kumrić M, Kurir TT, Božić J. Emerging biomarkers for early detection of chronic kidney disease. J Pers Med. 2022;12(4):548.

Article  PubMed  PubMed Central  Google Scholar 

Oh SW, Kim S, Na KY, Chae DW, Kim S, Jin DC, et al. Clinical implications of pathologic diagnosis and classification for diabetic nephropathy. Diabetes Res Clin Pract. 2012;97(3):418–24. https://doi.org/10.1016/j.diabres.2012.03.016.

Article  PubMed  Google Scholar 

Tachibana S, Iyoda M, Suzuki T, Kanazawa N, Honda H. Serum uromodulin levels reflect severity of clinicopathological findings in early stage IgA nephropathy. Am J Nephrol. 2022;53(7):575–85. https://doi.org/10.1159/000525836.

Article  CAS  PubMed  Google Scholar 

Devuyst O, Bochud M, Olinger E. UMOD and the architecture of kidney disease. Pflügers Arch Eur J Physiol. 2022;474(8):771–81. https://doi.org/10.1007/s00424-022-02733-4.

Article  CAS  Google Scholar 

Renigunta A, Renigunta V, Saritas T, Decher N, Mutig K, Waldegger S. Tamm-Horsfall glycoprotein interacts with renal outer medullary potassium channel ROMK2 and regulates its function. J Biol Chem. 2011;286(3):2224–35.

Article  CAS  PubMed  Google Scholar 

Wolf MT, Wu XR, Huang CL. Uromodulin upregulates TRPV5 by impairing caveolin-mediated endocytosis. Kidney Int. 2013;84(1):130–7.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Schmid M, Prajczer S, Gruber LN, Bertocchi C, Gandini R, Pfaller W, et al. Uromodulin facilitates neutrophil migration across renal epithelial monolayers. Cell Physiol Biochem. 2010;26(3):311–8.

Article  CAS  PubMed  Google Scholar 

El-Achkar TM, McCracken R, Liu Y, Heitmeier MR, Bourgeois S, Ryerse J, et al. Tamm-Horsfall protein translocates to the basolateral domain of thick ascending limbs, interstitium, and circulation during recovery from acute kidney injury. Am J Physiol Renal Physiol. 2013;304(8):F1066–75. https://doi.org/10.1152/ajprenal.00543.2012.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Boder P, Mary S, Mark PB, Leiper J, Dominiczak AF, Padmanabhan S, et al. Mechanistic interactions of uromodulin with the thick ascending limb: perspectives in physiology and hypertension. J Hypertens. 2021;39(8):1490–504. https://doi.org/10.1097/HJH.0000000000002861.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Latifkar A, Hur YH, Sanchez JC, Cerione RA, Antonyak MA. New insights into extracellular vesicle biogenesis and function. J Cell Sci. 2019;132(13):jcs222406.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Van Niel G, d’Angelo G, Raposo G. Shedding light on the cell biology of extracellular vesicles. Nat Rev Mol Cell Biol. 2018;19(4):213–28. https://doi.org/10.1038/nrm.2017.125.

Article  CAS  PubMed  Google Scholar 

Akers JC, Gonda D, Kim R, Carter BS, Chen CC. Biogenesis of extracellular vesicles (EV): exosomes, microvesicles, retrovirus-like vesicles, and apoptotic bodies. J Neurooncol. 2013;113(1):1–11. https://doi.org/10.1007/s11060-013-1084-8.

Article  PubMed  PubMed Central  Google Scholar 

Petrovčíková E, Vičíková K, Leksa V. Extracellular vesicles – biogenesis, composition, function, uptake and therapeutic applications. Biologia. 2018;73(4):437–48. https://doi.org/10.2478/s11756-018-0047-0.

Article  Google Scholar 

Sinha N, Kumar V, Puri V, Nada R, Rastogi A, Jha V, et al. Urinary exosomes: potential biomarkers for diabetic nephropathy. Nephrology (Carlton). 2020;25(12):881–7. https://doi.org/10.1111/nep.13720.

Article  PubMed  Google Scholar 

Okamura A, Yoshioka Y, Saito Y, Ochiya T. Can extracellular vesicles as drug delivery systems be a game changer in cardiac disease? Pharm Res. 2022. https://doi.org/10.1007/s11095-022-03463-z.

Article  PubMed  PubMed Central  Google Scholar 

Ortega-Sanchez FG, Teresa V, Widmann T, Regiart M, Jerez-Salcedo MT, Fernández-Baldo MA, et al. Microfluidic systems in extracellular vesicles single analysis. A systematic review. TrAC Trends Anal Chem. 2023;159:116920.

Article  CAS  Google Scholar 

Meng Y, Asghari M, Aslan MK, Yilmaz A, Mateescu B, Stavrakis S, et al. Microfluidics for extracellular vesicle separation and mimetic synthesis: recent advances and future perspectives. Chem Eng J. 2020;404:126110. https://doi.org/10.1016/j.cej.2020.126110.

Article  CAS  Google Scholar 

Mateescu B, Kowal EJ, van Balkom BW, Bartel S, Bhattacharyya SN, Buzás EI, et al. Obstacles and opportunities in the functional analysis of extracellular vesicle RNA–an ISEV position paper. J Extracell Vesicles. 2017;6(1):1286095.

Article  PubMed  PubMed Central  Google Scholar 

Draznin B, Aroda VR, Bakris G, Benson G, Brown FM, American Diabetes Association Professional Practice C, et al. 11. Chronic kidney disease and risk management: Standards of Medical Care in Diabetes-2022. Diabetes Care. 2022;45(Suppl 1):S175–84.

Google Scholar 

Lv CY, Ding WJ, Wang YL, Zhao ZY, Li JH, Chen Y, et al. A PEG-based method for the isolation of urinary exosomes and its application in renal fibrosis diagnostics using cargo miR-29c and miR-21 analysis. Int Urol Nephrol. 2018;50(5):973–82.

Article  CAS  PubMed  Google Scholar 

Weng Y, Sui Z, Shan Y, Hu Y, Chen Y, Zhang L, et al. Effective isolation of exosomes with polyethylene glycol from cell culture supernatant for in-depth proteome profiling. Analyst. 2016;141(15):4640–6. https://doi.org/10.1039/c6an00892e.

Article  CAS  PubMed  Google Scholar 

Yamamoto CM, Murakami T, Oakes ML, Mitsuhashi M, Kelly C, Henry RR, et al. Uromodulin mRNA from urinary extracellular vesicles correlate to kidney function decline in type 2 diabetes mellitus. Am J Nephrol. 2018;47(5):283–91. https://doi.org/10.1159/000489129.

Article  CAS  PubMed  Google Scholar 

Wang H, Zhang R, Wu X, Chen Y, Ji W, Wang J, et al. The Wnt signaling pathway in diabetic nephropathy. Front Cell Dev Biol. 2021;9:701547. https://doi.org/10.3389/fcell.2021.701547.

Article  PubMed  Google Scholar 

Erekat NS. Programmed cell death in diabetic nephropathy: a review of apoptosis autophagy and necroptosis. Med Sci Monit Int Med J Exp Clin Res. 2022;28:e937766-e.

Google Scholar 

Xie S, Zhang Q, Jiang L. Current knowledge on exosome biogenesis, Cargo-sorting mechanism and therapeutic implications. Membranes. 2022;12(5):498.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhang H, Zhang Q, Deng Y, Chen M, Yang C. Improving isolation of extracellular vesicles by utilizing nanomaterials. Membranes (Basel). 2021;12(1):55.

Article  PubMed  Google Scholar 

Micanovic R, LaFavers K, Garimella PS, Wu X-R, El-Achkar TM. Uromodulin (Tamm–Horsfall protein): guardian of urinary and systemic homeostasis. Nephrol Dial Transplant. 2020;35(1):33–43.

Article  CAS  PubMed  Google Scholar 

Säemann MD, Weichhart T, Zeyda M, Staffler G, Schunn M, Stuhlmeier KM, et al. Tamm-Horsfall glycoprotein links innate immune cell activation with adaptive immunity via a Toll-like receptor-4–dependent mechanism. J Clin Investig. 2005;115(2):468–75.

Article  PubMed  PubMed Central  Google Scholar 

El-Achkar TM, Dagher PC. Tubular cross talk in acute kidney injury: a story of sense and sensibility. Am J Physiol Renal Physiol. 2015;308(12):F1317–23.

Article  PubMed  PubMed Central  Google Scholar 

Liu Y, El-Achkar TM, Wu X-R. Tamm-Horsfall protein regulates circulating and renal cytokines by affecting glomerular filtration rate and acting as a urinary cytokine trap. J Biol Chem. 2012;287(20):16365–78. https://doi.org/10.1074/jbc.M112.348243.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rhodes DC. Importance of carbohydrate in the interaction of Tamm-Horsfall protein with complement 1q and inhibition of classical complement activation. Immunol Cell Biol. 2006;84(4):357–65. https://doi.org/10.1111/j.1440-1711.2006.01434.x.

Article  CAS  PubMed  Google Scholar 

LaFavers KA, Macedo E, Garimella PS, Lima C, Khan S, Myslinski J, et al. Circulating uromodulin inhibits systemic oxidative stress by inactivating the TRPM2 channel. Sci Transl Med. 2019;11(512):eaaw3639.

Article  PubMed  PubMed Central  Google Scholar 

Srivastava R, Micanovic R, El-Achkar TM, Janga SC. An intricate network of conserved DNA upstream motifs and associated transcription factors regulate the expression of uromodulin gene. J Urol. 2014;192(3):981–9. https://doi.org/10.1016/j.juro.2014.02.095.

Article  CAS  PubMed  Google Scholar 

Lou NJ, Ni YH, Jia HY, Deng JT, Jiang L, Zheng FJ, et al. Urinary Microvesicle-bound uromodulin: a potential molecular biomarker in diabetic kidney disease. J Diabetes Res. 2017. https://doi.org/10.1155/2017/3918681.

Article  PubMed  PubMed Central 

留言 (0)

沒有登入
gif