Consensus guideline for the diagnosis and management of pituitary adenomas in childhood and adolescence: Part 1, general recommendations

Fisher, B. J., Gaspar, L. E., Stitt, L. W. & Noone, B. E. Pituitary adenoma in adolescents: a biologically more aggressive disease? Radiology 192, 869–872 (1994).

Article  CAS  PubMed  Google Scholar 

Beckers, A., Petrossians, P., Hanson, J. & Daly, A. F. The causes and consequences of pituitary gigantism. Nat. Rev. Endocrinol. 14, 705–720 (2018).

Article  CAS  PubMed  Google Scholar 

Barry, S. & Korbonits, M. Update on the genetics of pituitary tumors. Endocrinol. Metab. Clin. North Am. 49, 433–452 (2020).

Article  PubMed  Google Scholar 

National Cancer Registration and Analysis Service. Children, Teenagers and Young Adults UK Cancer Statistics Report 2021, Public Health England http://www.ncin.org.uk/cancer_type_and_topic_specific_work/cancer_type_specific_work/cancer_in_children_teenagers_and_young_adults/ (2021).

Kelly, A. P., Greenfield, J. P., Dobri, G. A. & Schwartz, T. H. Pediatric pituitary adenomas are more aggressive, more likely to be hormone producing and are more difficult to cure than adult pituitary adenomas: case series and systematic literature review. Childs Nerv. Syst. 38, 729–738 (2022).

Article  PubMed  Google Scholar 

Jayant, S. S. et al. Paediatric pituitary adenomas: clinical presentation, biochemical profile and long-term prognosis. Neurol. India 70, 304–311 (2022).

PubMed  Google Scholar 

Asa, S. L. et al. From pituitary adenoma to pituitary neuroendocrine tumor (PitNET): an International Pituitary Pathology Club proposal. Endocr. Relat. Cancer 24, C5–C8 (2017).

Article  CAS  PubMed  Google Scholar 

Trouillas, J. et al. Aggressive pituitary tumours and carcinomas: two sides of the same coin? Eur. J. Endocrinol. 178, C7–C9 (2018).

Article  CAS  PubMed  Google Scholar 

Ho, K. K. Y. et al. A tale of pituitary adenomas: to NET or not to NET: Pituitary Society position statement. Pituitary 22, 569–573 (2019).

Article  PubMed  Google Scholar 

Ho, K. K. Y. et al. The tale in evolution: clarity, consistency and consultation, not contradiction and confusion. Pituitary 23, 476–477 (2020).

Article  PubMed  Google Scholar 

Asa, S. L. et al. Pituitary neuroendocrine tumors (PitNETs): nomenclature evolution, not clinical revolution. Pituitary 23, 322–325 (2020).

Article  PubMed  Google Scholar 

Asa, S. L., Mete, O., Perry, A. & Osamura, R. Y. Overview of the 2022 WHO classification of pituitary tumors. Endocr. Pathol. 33, 6–26 (2022).

Article  CAS  PubMed  Google Scholar 

Ho, K. K. Y. et al. Pituitary adenoma or neuroendocrine tumour: the need for an integrated prognostic classification. Nat. Rev. Endocrinol. 19, 671–678 (2023).

Article  PubMed  Google Scholar 

Castellanos, L. E., Misra, M., Smith, T. R., Laws, E. R. & Iorgulescu, J. B. The epidemiology and management patterns of pediatric pituitary tumors in the United States. Pituitary 24, 412–419 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

National Cancer Registration and Analysis Service. Cancer in children, teenagers and young adults, http://ncin.org.uk/cancer_type_and_topic_specific_work/cancer_type_specific_work/cancer_in_children_teenagers_and_young_adults/ (Access date:11/04/2023).

Korbonits, M. et al. Consensus guideline for the diagnosis and management of pituitary adenomas in childhood and adolescence: part 2, specific diseases. Nat. Rev. Endocrinol. https://doi.org/10.1038/s41574-023-00949-7 (2024).

Brouwers, M. C. et al. AGREE II: advancing guideline development, reporting and evaluation in health care. Can. Med. Assoc. J. 182, E839–842 (2010).

Article  Google Scholar 

Children’s Cancer and Leukaemia Group. Children’s Cancer and Leukaemia Guideline Development Standard Operating Procedure, Version 5 https://www.cclg.org.uk/what-we-do/clinical-treatment-guidelines (Access date: 19/01/2022).

Schardt, C., Adams, M. B., Owens, T., Keitz, S. & Fontelo, P. Utilization of the PICO framework to improve searching PubMed for clinical questions. BMC Med. Inform. Decis. Mak. 7, 16 (2007).

Article  PubMed  PubMed Central  Google Scholar 

Atkins, D. et al. Grading quality of evidence and strength of recommendations. BMJ 328, 1490 (2004).

Article  PubMed  Google Scholar 

Perry, A. et al. Pediatric pituitary adenoma: case series, review of the literature, and a skull base treatment paradigm. J. Neurol. Surg. B Skull Base 79, 91–114 (2018).

Article  PubMed  PubMed Central  Google Scholar 

Freund, K. et al. A 7-year update report of a national, interdisciplinary endeavour to improve outcomes for children and young people under 19 years of age with hypothalamic pituitary axis tumours (HPAT) using multi-site video conferencing. Horm. Res. Paediatr. 90 (Suppl. 1), 496–497 (2018).

Google Scholar 

Batista, D. et al. Detection of adrenocorticotropin-secreting pituitary adenomas by magnetic resonance imaging in children and adolescents with Cushing disease. J. Clin. Endocrinol. Metab. 90, 5134–5140 (2005).

Article  CAS  PubMed  Google Scholar 

Patronas, N. et al. Spoiled gradient recalled acquisition in the steady state technique is superior to conventional postcontrast spin echo technique for magnetic resonance imaging detection of adrenocorticotropin-secreting pituitary tumors. J. Clin. Endocrinol. Metab. 88, 1565–1569 (2003).

Article  CAS  PubMed  Google Scholar 

Chowdhury, I. N., Sinaii, N., Oldfield, E. H., Patronas, N. & Nieman, L. K. A change in pituitary magnetic resonance imaging protocol detects ACTH-secreting tumours in patients with previously negative results. Clin. Endocrinol. 72, 502–506 (2010).

Article  Google Scholar 

Arbab, A. S. 3D gradient echo sequence provides better images in contrast-enhanced imaging of the pituitary gland at 3 T. Imaging Med. 2, 129–130 (2010).

Article  PubMed  PubMed Central  Google Scholar 

Kakite, S. et al. Three-dimensional gradient echo versus spin echo sequence in contrast-enhanced imaging of the pituitary gland at 3T. Eur. J. Radiol. 79, 108–112 (2011).

Article  PubMed  Google Scholar 

Kasaliwal, R. et al. Volume interpolated 3D-spoiled gradient echo sequence is better than dynamic contrast spin echo sequence for MRI detection of corticotropin secreting pituitary microadenomas. Clin. Endocrinol. 78, 825–830 (2013).

Article  CAS  Google Scholar 

Gan, H. W. et al. National UK guidelines for the management of paediatric craniopharyngioma. Lancet Diabetes Endocrinol. 11, 694–706 (2023).

Article  PubMed  Google Scholar 

Cerbone, M. et al. Management of children and young people with idiopathic pituitary stalk thickening, central diabetes insipidus, or both: a national clinical practice consensus guideline. Lancet Child. Adolesc. Health 5, 662–676 (2021).

Article  PubMed  Google Scholar 

Bashari, W. A. et al. Using molecular imaging to enhance decision making in the management of pituitary adenomas. J. Nucl. Med. 62, 57S–62S (2021).

Article  CAS  PubMed  Google Scholar 

Veldhuijzen van Zanten, S. E. M., Neggers, S., Valkema, R. & Verburg, F. A. Positive [18F]fluoroethyltyrosine PET/MRI in suspected recurrence of growth hormone-producing pituitary adenoma in a paediatric patient. Eur. J. Nucl. Med. Mol. Imaging 49, 410–411 (2021).

Article  PubMed  PubMed Central  Google Scholar 

Pinker, K. et al. The value of high-field MRI (3T) in the assessment of sellar lesions. Eur. J. Radiol. 54, 327–334 (2005).

Article  CAS  PubMed  Google Scholar 

Berkmann, S., Fandino, J., Muller, B., Remonda, L. & Landolt, H. Intraoperative MRI and endocrinological outcome of transsphenoidal surgery for non-functioning pituitary adenoma. Acta Neurochir. 154, 639–647 (2012).

Article  PubMed  Google Scholar 

Szerlip, N. J. et al. Transsphenoidal resection of sellar tumors using high-field intraoperative magnetic resonance imaging. Skull Base 21, 223–232 (2011).

Article  PubMed  PubMed Central  Google Scholar 

Nimsky, C., von Keller, B., Ganslandt, O. & Fahlbusch, R. Intraoperative high-field magnetic resonance imaging in transsphenoidal surgery of hormonally inactive pituitary macroadenomas. Neurosurgery 59, 105–114 (2006).

Article  PubMed  Google Scholar 

Wu, J. S. et al. Transsphenoidal pituitary macroadenomas resection guided by PoleStar N20 low-field intraoperative magnetic resonance imaging: comparison with early postoperative high-field magnetic resonance imaging. Neurosurgery 65, 63–70 (2009).

Article  PubMed  Google Scholar 

Fomekong, E. et al. Intraoperative 3T MRI for pituitary macroadenoma resection: initial experience in 73 consecutive patients. Clin. Neurol. Neurosurg. 126, 143–149 (2014).

Article  PubMed  Google Scholar 

Zhang, H. et al. Analysis of 137 patients who underwent endoscopic transsphenoidal pituitary adenoma resection under high-field intraoperative magnetic resonance imaging navigation. World Neurosurg. 104, 802–815 (2017).

Article  PubMed  Google Scholar 

Staartjes, V. E., Togni-Pogliorini, A., Stumpo, V., Serra, C. & Regli, L. Impact of intraoperative magnetic resonance imaging on gross total resection, extent of resection, and residual tumor volume in pituitary surgery: systematic review and meta-analysis. Pituitary 24, 644–656 (2021).

Article  PubMed  PubMed Central  Google Scholar 

Holowka, S., Shroff, M. & Chavhan, G. B. Use and safety of gadolinium based contrast agents in pediatric MR imaging. Indian J. Pediatr. 86, 961–966 (2019).

Article  PubMed  Google Scholar 

Bonneville, J. F. A plea for the T2W MR sequence for pituitary imaging. Pituitary 22, 195–197 (2019).

Article  PubMed  Google Scholar 

留言 (0)

沒有登入
gif