A deep learning approach for mental health quality prediction using functional network connectivity and assessment data

Abdallah, M., Farrugia, N., Chirokoff, V., & Chanraud, S. (2020). Static and dynamic aspects of cerebro-cerebellar functional connectivity are associated with self-reported measures of impulsivity: A resting-state fmri study. Network Neuroscience, 4(3), 891–909.

Article  PubMed  PubMed Central  Google Scholar 

Al-Ezzi, A., Yahya, N., Kamel, N., Faye, I., Alsaih, K., & Gunaseli, E. (2021). Severity assessment of social anxiety disorder using deep learning models on brain effective connectivity. IEEE Access, 9, 86899–86913.

Article  Google Scholar 

Allen, E. A., Damaraju, E., Plis, S. M., Erhardt, E. B., Eichele, T., & Calhoun, V. D. (2014). Tracking whole-brain connectivity dynamics in the resting state. Cerebral Cortex, 24(3), 663–676.

Article  PubMed  Google Scholar 

Andersson, J. L., Skare, S., & Ashburner, J. (2003). How to correct susceptibility distortions in spin-echo echo-planar images: Application to diffusion tensor imaging. NeuroImage, 20(2), 870–888.

Article  PubMed  Google Scholar 

Barlow, D. H., Curreri, A. J., & Woodard, L. S. (2021). Neuroticism and disorders of emotion: A new synthesis. Current Directions in Psychological Science, 30(5), 410–417.

Article  Google Scholar 

Bispo Júnior, J. P. (2022). Social desirability bias in qualitative health research. Revista de Saúde Pública, 56.

Bridle, J. S. (1990). Probabilistic interpretation of feedforward classification network outputs, with relationships to statistical pattern recognition. Neurocomputing: Algorithms, architectures and applications (pp. 227–236).

Chawla, N. V., Bowyer, K. W., Hall, L. O., & Kegelmeyer, W. P. (2002). Smote: Synthetic minority over-sampling technique. Journal of artificial intelligence research, 16, 321–357.

Article  Google Scholar 

Cheng, W., Zhao, M., Xie, X., Chen, Y., Huang, M., & Tang, Y. (2022). Abnormal intrinsic connectivity of resting-state networks in bipolar disorder: A machine learning study. Frontiers in Psychiatry, 13, 782698.

Google Scholar 

Chen, G., Liu, S., Zhu, J., Gu, J., & Wang, Y. (2021). Machine learning-based prediction of cognitive decline using resting-state fmri. Frontiers in Aging Neuroscience, 13, 692102.

Google Scholar 

Clemens, B., Wagels, L., Bauchmüller, M., Bergs, R., Habel, U., & Kohn, N. (2017). Alerted default mode: Functional connectivity changes in the aftermath of social stress. Scientific Reports, 7(1), 1–9.

Article  Google Scholar 

Craddock, R. C., Holtzheimer, P. E., III., Hu, X. P., & Mayberg, H. S. (2009). Disease state prediction from resting state functional connectivity. Magnetic Resonance in Medicine: An Official Journal of the International Society for Magnetic Resonance in Medicine, 62(6), 1619–1628.

Cwiek, A., Rajtmajer, S. M., Wyble, B., Honavar, V., Grossner, E., & Hillary, F. G. (2022). Feeding the machine: Challenges to reproducible predictive modeling in resting-state connectomics. Network Neuroscience, 6(1), 29–48.

PubMed  PubMed Central  Google Scholar 

Dempster, A. P., Laird, N. M., & Rubin, D. B. (1977). Maximum likelihood from incomplete data via the em algorithm. Journal of the Royal Statistical Society: Series B (Methodological), 39(1), 1–22.

MathSciNet  Google Scholar 

Du, Y., Fu, Z., Sui, J., Gao, S., Xing, Y., Lin, D., . . . others (2020). Neuromark: An automated and adaptive ica based pipeline to identify reproducible fmri markers of brain disorders. NeuroImage: Clinical, 28, 102375.

Du, Y., & Fan, Y. (2013). Group information guided ica for fmri data analysis. NeuroImage, 69, 157–197.

Article  PubMed  Google Scholar 

Dutt, R. K., Hannon, K., Easley, T. O., Griffis, J. C., Zhang, W., & Bijsterbosch, J. D. (2022). Mental health in the uk biobank: A roadmap to self-report measures and neuroimaging correlates. Human Brain Mapping, 43(2), 816–832.

Article  PubMed  Google Scholar 

Fraley, C., & Raftery, A. E. (2002). Model-based clustering, discriminant analysis, and density estimation. Journal of the American Statistical Association, 97(458), 611–631.

Article  MathSciNet  Google Scholar 

Goulas, A., & Margulies, D. S. (2021). Resting-state fmri: A window into human brain plasticity. Neuroscience and Biobehavioral Reviews, 129, 38–55.

Google Scholar 

Jenkinson, M., Bannister, P., Brady, M., & Smith, S. (2002). Improved optimization for the robust and accurate linear registration and motion correction of brain images. NeuroImage, 17(2), 825–841.

Article  PubMed  Google Scholar 

Kaiser, R. H., Andrews-Hanna, J. R., Wager, T. D., & Pizzagalli, D. A. (2015). Large-scale network dysfunction in major depressive disorder: A metaanalysis of resting-state functional connectivity. JAMA Psychiatry, 72(6), 603–611.

Article  PubMed  PubMed Central  Google Scholar 

Kawahara, J., Brown, C. J., Miller, S. P., Booth, B. G., Chau, V., Grunau, R. E., & Hamarneh, G. (2017). Brainnetcnn: Convolutional neural networks for brain networks; towards predicting neurodevelopment. NeuroImage, 146, 1038–1049.

Article  PubMed  Google Scholar 

Kingma, D. P., & Ba, J. (2014). Adam: A method for stochastic optimization. arXiv preprintarXiv:1412.6980

Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2017). Imagenet classification with deep convolutional neural networks. Communications of the ACM, 60(6), 84–90.

Article  Google Scholar 

LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436–444.

Article  ADS  CAS  PubMed  Google Scholar 

Li, X., Yang, Z., Zhang, Q., Wei, D., Zhang, Y., Liu, C., . . . Hu, D. (2021). Exploring the potential of deep learning on rs-fmri data for accurate diagnosis of mental disorders. NeuroImage: Clinical, 32, 102804.

Lin, Q.-H., Liu, J., Zheng, Y.-R., Liang, H., & Calhoun, V. D. (2010). Semiblind spatial ica of fmri using spatial constraints. Human Brain Mapping, 31(7), 1076–1088.

Article  PubMed  Google Scholar 

Liu, Z., Cui, Y., Du, Y., Gao, J., Yin, H., Sun, H., & Li, X. (2022). Exploring the topological organization of resting-state functional connectivity networks in schizophrenia. Schizophrenia Research, 238, 23–29.

ADS  Google Scholar 

McGee Ng, S. A., Bagby, R. M., Goodwin, B. E., Burchett, D., Sellbom, M., Ayearst, L. E., & Baker, S. (2016). The effect of response bias on the personality inventory for dsm-5 (pid-5). Journal of Personality Assessment, 98(1), 51–61.

Article  PubMed  Google Scholar 

Miller, K., Alfaro-Almagro, F., Bangerter, N., Thomas, D., Yacoub, E., Xu, J., & Smith, S. (2016). Multimodal population brain imaging in the uk biobank prospective epidemiological study. Nature Neuroscience, 19(11), 1523–1536.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Nair, V., & Hinton, G. E. (2010). Rectified linear units improve restricted boltzmann machines. Proceedings of the 27th international conference on machine learning (icml-10) (pp. 807–814).

Riaz, A., Asad, M., Al Arif, S. M. R., Alonso, E., Dima, D., Corr, P., & Slabaugh, G. (2018). Deep fmri: An end-to-end deep network for classification of fmri data. 2018 ieee 15th international symposium on biomedical imaging (isbi 2018) (pp. 1419–1422).

Saba, T., Rehman, A., Shahzad, M. N., Latif, R., Bahaj, S. A., & Alyami, J. (2022). Machine learning for post-traumatic stress disorder identification utilizing resting-state functional magnetic resonance imaging. Microscopy Research and Technique, 85(6), 2083–2094.

Article  PubMed  Google Scholar 

Salimi-Khorshidi, G., Douaud, G., Beckmann, C. F., Glasser, M. F., Griffanti, L., & Smith, S. M. (2014). Automatic denoising of functional mri data: Combining independent component analysis and hierarchical fusion of classifiers. NeuroImage, 90, 449–468.

Article  PubMed  Google Scholar 

Schwarz, G. (1978). Estimating the dimension of a model. The annals of statistics, 461–464.

Selvaraju, R. R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., & Batra, D. (2017). Grad-cam: Visual explanations from deep networks via gradientbased localization. Proceedings of the ieee international conference on computer vision (pp. 618–626).

Shen, X., Finn, E. S., Scheinost, D., Rosenberg, M. D., Chun, M. M., Papademetris, X., & Constable, R. T. (2017). Using connectome-based predictive modeling to predict individual behavior from brain connectivity. Nature Protocols, 12(3), 506–518.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Smith, D. J., Nicholl, B. I., Cullen, B., Martin, D., Ul-Haq, Z., Evans, J., ... others (2013). Prevalence and characteristics of probable major depression and bipolar disorder within uk biobank: Cross-sectional study of 172,751 participants. PLoS ONE, 8(11), e75362.

Snyder, H. R. (2013). Major depressive disorder is associated with broad impairments on neuropsychological measures of executive function: A meta-analysis and review. Psychological Bulletin, 139(1), 81.

Article  PubMed  Google Scholar 

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., & Salakhutdinov, R. (2014). Dropout: A simple way to prevent neural networks from overfitting. The journal of machine learning research, 15(1), 1929–1958.

MathSciNet  Google Scholar 

Su, C., Xu, Z., Pathak, J., & Wang, F. (2020). Deep learning in mental health outcome research: A scoping review. Translational Psychiatry, 10(1), 116.

Article  PubMed  PubMed Central  Google Scholar 

Uyulan, C., Ergüzel, T. T., Unubol, H., Cebi, M., Sayar, G. H., Nezhad Asad, M., & Tarhan, N. (2021). Major depressive disorder classification based on different convolutional neural network models: Deep learning approach. Clinical EEG and Neuroscience, 52(1), 38–51.

Article  PubMed  Google Scholar 

Wang, W., Peng, Z., Wang, X., Wang, P., Li, Q., Wang, G., ... Liu, S. (2019). Disrupted interhemispheric resting-state functional connectivity and structural connectivity in first-episode, treatment-naive generalized anxiety disorder. Journal of Affective Disorders, 251, 280–286.

Yoshida, K., Shimizu, Y., Yoshimoto, J., Takamura, M., Okada, G., Okamoto, Y., ... Doya, K. (2017). Prediction of clinical depression scores and detection of changes in whole-brain using resting-state functional mri data with partial least squares regression. PLoS ONE, 12(7), e0179638.

Zeng, L.-L., Shen, H., Liu, L., Wang, L., Li, B., Fang, P., ... Hu, D. (2012). Identifying major depression using whole-brain functional connectivity: A multivariate pattern analysis. Brain, 135(5), 1498–1507.

Zhang, J.-T., Yao, Y.-W., Li, C.-S.R., Zang, Y.-F., Shen, Z.-J., Liu, L., ... Fang, X.-Y. (2016). Altered resting-state functional connectivity of the insula in young adults with i nternet gaming disorder. Addiction Biology, 21(3), 743–751.

Zhang, W., Hashemi, M. M., Kaldewaij, R., Koch, S. B., Beckmann, C., Klumpers, F., & Roelofs, K. (2019). Acute stress alters the ‘default’ brain processing. NeuroImage, 189, 870–877.

Zhang, X., Huettel, S. A., O’Dhaniel, A., Guo, H., & Wang, L. (2019). Exploring common changes after acute mental stress and acute tryptophan depletion: Resting-state fmri studies. Journal of Psychiatric Research, 113, 172–180.

Article  PubMed  Google Scholar 

Zhou, B., Khosla, A., Lapedriza, A., Oliva, A., & Torralba, A. (2016). Learning deep features for discriminative localization. Proceedings of the ieee conference on computer vision and pattern recognition (pp. 2921–2929).

留言 (0)

沒有登入
gif