Marine Polysaccharides Carrageenans Enhance Eryptosis and Alter Lipid Order of Cell Membranes in Erythrocytes

Yermak, I. M., Davydova, V. N., & Volod’ko, A. V. (2022). Mucoadhesive Marine Polysaccharides. Marine Drugs, 20, 522.

Ghanbarzadeh, M., Golmoradizadeh, A., & Homaei, A. (2018). Carrageenans and carrageenases: versatile polysaccharides and promising marine enzymes. Phytochemistry Reviews, 17, 535–571.

Article  CAS  Google Scholar 

Liu, F., Duan, G., & Yang, H. (2023). Recent advances in exploiting carrageenans as a versatile functional material for promising biomedical applications. International Journal of Biological Macromolecules, 235, 123787.

Article  CAS  PubMed  Google Scholar 

Borsani, B., De Santis, R., Perico, V., et al. (2021). The Role of Carrageenan in Inflammatory Bowel Diseases and Allergic Reactions: Where Do We Stand? Nutrients, 13, 3402.

Ścieszka, S., & Klewicka, E. (2019). Algae in food: a general review. Critical Reviews in Food Science and Nutrition, 59, 3538–3547.

Article  PubMed  Google Scholar 

Liao, Y. C., Chang, C. C., Nagarajan, D., Chen, C. Y., & Chang, J. S. (2021). Algae-derived hydrocolloids in foods: applications and health-related issues. Bioengineered, 12, 3787–3801.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ciancia, M., Matulewicz, M. C., & Tuvikene, R. (2020). Structural Diversity in Galactans From Red Seaweeds and Its Influence on Rheological Properties. Frontiers in Plant Science, 11, 559986.

Álvarez-Viñas, M., Souto, S., Flórez-Fernández, N., Torres, M. D., Bandín, I., & Domínguez, H. (2021). Antiviral Activity of Carrageenans and Processing Implications. Marine Drugs 19, 437.

Frediansyah, A. (2021). The antiviral activity of iota-, kappa-, and lambda-carrageenan against COVID-19: A critical review. Clinical Epidemiology and Global Health, 12, 100826.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Krylova, N. V., Kravchenko, A. O., & Iunikhina, O. V., et al. (2022). Influence of the Structural Features of Carrageenans from Red Algae of the Far Eastern Seas on Their Antiviral Properties. Marine Drugs, 20, 60.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liu, Z., Gao, T., Yang, Y., et al. (2019). Anti-Cancer Activity of Porphyran and Carrageenan from Red Seaweeds. Molecules 24, 4286.

Khotimchenko, M., Tiasto, V., & Kalitnik, A., et al. (2020). Antitumor potential of carrageenans from marine red algae. Carbohydrate Polymers, 246, 116568.

Article  CAS  PubMed  Google Scholar 

Pacheco-Quito, E. M., Ruiz-Caro, R., Veiga, M. D. (2020). Carrageenan: Drug Delivery Systems and Other Biomedical Applications. Marine Drugs, 18, 583.

Zank, P. D., Cerveira, M. M., & Santos, V. B. D., et al. (2023). Carrageenan from Gigartina skottsbergii: A Novel Molecular Probe to Detect SARS-CoV-2. Biosensors, 13, 378.

Article  CAS  PubMed  PubMed Central  Google Scholar 

McKim, J. M., Willoughby, Sr, J. A., Blakemore, W. R., & Weiner, M. L. (2019). Clarifying the confusion between poligeenan, degraded carrageenan, and carrageenan: A review of the chemistry, nomenclature, and in vivo toxicology by the oral route. Critical Reviews in Food Science and Nutrition, 59, 3054–3073.

Article  CAS  PubMed  Google Scholar 

Tobacman, J. K. (2001). Review of harmful gastrointestinal effects of carrageenan in animal experiments. Environ Health Perspect, 109, 983–994.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cohen, S. M., & Ito, N. (2002). A critical review of the toxicological effects of carrageenan and processed eucheuma seaweed on the gastrointestinal tract. Critical Reviews in Toxicology, 32, 413–444.

Article  CAS  PubMed  Google Scholar 

Martino, J. V., Van Limbergen, J., & Cahill, L. E. (2017). The Role of Carrageenan and Carboxymethylcellulose in the Development of Intestinal Inflammation. Frontiers in Pediatrics, 5, 96.

David, S., Shani Levi, C., & Fahoum, L., et al. (2018). Revisiting the carrageenan controversy: do we really understand the digestive fate and safety of carrageenan in our foods? Food and Function Journal, 9, 1344–1352.

Article  CAS  Google Scholar 

Liu, F., Hou, P., Zhang, H., Tang, Q., Xue, C., & Li, R. W. (2021). Food-grade carrageenans and their implications in health and disease. Comprehensive Reviews in Food Science and Food Safety, 20, 3918–3936.

Article  CAS  PubMed  Google Scholar 

Pogozhykh, D., Posokhov, Y., Myasoedov, V., et al. (2021). Experimental Evaluation of Food-Grade Semi-Refined Carrageenan Toxicity. International Journal of Molecular Sciences, 22, 11178.

Additives EPanel oF, Food NSat, Younes, M., et al. (2018). Re-evaluation of carrageenan (E 407) and processed Eucheuma seaweed (E 407a) as food additives. EFSA Journal, 16, e05238.

Google Scholar 

Weiner, M. L. (2014). Food additive carrageenan: Part II: A critical review of carrageenan in vivo safety studies. Critical Reviews in Toxicology, 44, 244–269.

Article  CAS  PubMed  Google Scholar 

McKim, Jr, J. M., Baas, H., Rice, G. P., Willoughby, Sr, J. A., Weiner, M. L., & Blakemore, W. (2016). Effects of carrageenan on cell permeability, cytotoxicity, and cytokine gene expression in human intestinal and hepatic cell lines. Food and Chemical Toxicology, 96, 1–10.

Article  CAS  PubMed  Google Scholar 

Guo, J., Shang, X., Chen, P., & Huang, X. (2023). How does carrageenan cause colitis? A review. Carbohydrate Polymers, 302, 120374.

Article  CAS  PubMed  Google Scholar 

Marques, D. M. C., Silva, J. C., Serro, A. P., Cabral, J. M. S., Sanjuan-Alberte, P., & Ferreira, F. C. (2022) 3D Bioprinting of Novel κ-Carrageenan Bioinks: An Algae-Derived Polysaccharide. Bioengineering (Basel) 9, 109.

Loukelis, K., Machla, F., Bakopoulou, A., & Chatzinikolaidou, M. (2023). Kappa-Carrageenan/Chitosan/Gelatin Scaffolds Provide a Biomimetic Microenvironment for Dentin-Pulp Regeneration. International Journal of Molecular Sciences, 24, 6465.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yilmaz-Aykut, D., Torkay, G., Kasgoz, A., Shin, S. R., Bal-Ozturk, A., & Deligoz, H. (2023). Injectable and self-healing dual crosslinked gelatin/kappa-carrageenan methacryloyl hybrid hydrogels via host-guest supramolecular interaction for wound healing. Journal of Biomedical Materials Research, 111, 1921–1937.

Chen, Z., Yang, B., Yan, Z., Song, E., & Song, Y. (2022). Eryptosis is an indicator of hematotoxicity in the risk assessment of environmental amorphous silica nanoparticles exposure: The role of macromolecule corona. Toxicology Letters, 367, 40–47.

Article  CAS  PubMed  Google Scholar 

Tkachenko, A., Onishchenko, A., Myasoedov, V., Yefimova, S., & Havranek, O. (2023). Assessing regulated cell death modalities as an efficient tool for in vitro nanotoxicity screening: a review. Nanotoxicology, 17, 218–248.

Boulet, C., Doerig, C. D., & Carvalho, T. G. (2018). Manipulating Eryptosis of Human Red Blood Cells: A Novel Antimalarial Strategy? Frontiers in Cellular and Infection Microbiology 8, 419.

Boulet, C., Gaynor, T. L., & Carvalho, T. G. (2021). Eryptosis and Malaria: New Experimental Guidelines and Re-Evaluation of the Antimalarial Potential of Eryptosis Inducers. Frontiers in Cellular and Infection Microbiology, 11, 630812.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Scovino, A. M., Totino, P. R. R., & Morrot, A. (2022). Eryptosis as a New Insight in Malaria Pathogenesis. Frontiers in Immunology, 13, 855795.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tkachenko, A., Kot, Y., Prokopyuk, V., et al. (2021). Food additive E407a stimulates eryptosis in a dose-dependent manner. Wien Med Wochenschr.

Peter, T., Bissinger, R., & Lang, F. (2016). Erythrocyte Shrinkage and Cell Membrane Scrambling after Exposure to the Ionophore Nonactin. Basic & Clinical Pharmacology and Toxicology, 118, 107–112.

Article  CAS  Google Scholar 

Prokopiuk, V., Yefimova, S., & Onishchenko, A., et al. (2023). Assessing the Cytotoxicity of TiO(2-x) Nanoparticles with a Different Ti(3+)(Ti(2+))/Ti(4+) Ratio. Biological Trace Element Research, 201, 3117–3130.

Article  CAS  PubMed  Google Scholar 

Alfhili, M. A., Nkany, M. B., Weidner, D. A., & Lee, M. H. (2019). Stimulation of eryptosis by broad-spectrum insect repellent N,N-Diethyl-3-methylbenzamide (DEET). Toxicology and Applied Pharmacology, 370, 36–43.

Article  CAS  PubMed  Google Scholar 

Alfhili, M. A., & Aljuraiban, G. S. (2021). Lauric Acid, a Dietary Saturated Medium-Chain Fatty Acid, Elicits Calcium-Dependent Eryptosis. Cells, 10, 3388.

Zangeneh, A. R., Takhshid, M. A., Ranjbaran, R., Maleknia, M., & Meshkibaf, M. H. (2021). Diverse Effect of Vitamin C and N-Acetylcysteine on Aluminum-Induced Eryptosis. Biochemistry Research International, 2021, 6670656.

Article  PubMed  PubMed Central  Google Scholar 

Tkachenko, A., & Onishchenko, A. (2023). Casein kinase 1α mediates eryptosis: a review. Apoptosis, 28, 1–19.

Article  CAS  PubMed  Google Scholar 

Tietze, F. (1969). Enzymic method for quantitative determination of nanogram amounts of total and oxidized glutathione: Applications to mammalian blood and other tissues. Analytical Biochemistry, 27, 502–522.

Article  CAS  PubMed  Google Scholar 

Tupper, J., Tozer, G. M., & Dachs, G. U. (2004). Use of horseradish peroxidase for gene-directed enzyme prodrug therapy with paracetamol. British Journal of Cancer, 90, 1858–1862.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Carlberg, I., & Mannervik, B. (1975). Purification and characterization of the flavoenzyme glutathione reductase from rat liver. Journal of Biological Chemistry, 250, 5475–5480.

Article  CAS  PubMed  Google Scholar 

Paglia, D. E., & Valentine, W. N. (1967). Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase. Journal of Laboratory and Clinical Medicine, 70, 158–169.

CAS  PubMed  Google Scholar 

Warholm, M., Guthenberg, C., von Bahr, C., & Mannervik, B. (1985). Glutathione transferases from human liver. Methods in Enzymology, 113, 499–504.

Article  CAS  PubMed  Google Scholar 

Posokhov, Y. O., Kyrychenko, A., & Korniyenko, Y. (2018). Derivatives of 2,5-Diaryl-1,3-Oxazole and 2,5-Diaryl-1,3,4-Oxadiazole as Environment-Sensitive Fluorescent Probes for Studies of Biological Membranes. In C. D. Geddes (ed), Reviews in Fluorescence 2017 (pp. 199–230). Cham: Springer International Publishing.

Posokhov, Y., & Kyrychenko, A. (2018). Location of fluorescent probes (2’-hydroxy derivatives of 2,5-diaryl-1,3-oxazole) in lipid membrane studied by fluorescence spectroscopy and molecular dynamics simulation. Biophysical Chemistry, 235, 9–18.

Article  CAS  PubMed  Google Scholar 

Kurad, D., Jeschke, G., & Marsh, D. (2003). Lipid membrane polarity profiles by high-field EPR. Biophysical Journal, 85, 1025–1033.

Article  ADS 

留言 (0)

沒有登入
gif