E3 Ubiquitin Ligase ASB14 Inhibits Cardiomyocyte Proliferation by Regulating MAPRE2 Ubiquitination

Virani, S. S., Alonso, A., Benjamin, E. J., Bittencourt, M. S., Callaway, C. W., Carson, A. P., Chamberlain, A. M., Chang, A. R., Cheng, S., Delling, F. N., Djousse, L., Elkind, M. S. V., Ferguson, J. F., Fornage, M., Khan, S. S., Kissela, B. M., Knutson, K. L., Kwan, T. W., Lackland, D. T., Lewis, T. T., Lichtman, J. H., Longenecker, C. T., Loop, M. S., Lutsey, P. L., Martin, S. S., Matsushita, K., Moran, A. E., Mussolino, M. E., Perak, A. M., Rosamond, W. D., Roth, G. A., Sampson, U. K. A., Satou, G. M., Schroeder, E. B., Shah, S. H., Shay, C. M., Spartano, N. L., Stokes, A., Tirschwell, D. L., VanWagner, L. B. & & Tsao, C. W. (2020). Heart disease and stroke statistics update: a report from the American heart association.Circulation, 141, e139–e596. https://doi.org/10.1161/cir.0000000000000757.

Article  PubMed  Google Scholar 

Ongstad, E. L., & Gourdie, R. G. (2016). Can heart function lost to disease be regenerated by therapeutic targeting of cardiac scar tissue? Seminar in Cellular and Developmental Biology, 58, 41–54. https://doi.org/10.1016/j.semcdb.2016.05.020.

Article  Google Scholar 

Senyo, S. E., Steinhauser, M. L., Pizzimenti, C. L., Yang, V. K., Cai, L., Wang, M., Wu, T. D., Guerquin-Kern, J. L., Lechene, C. P., & Lee, R. T. (2013). Mammalian heart renewal by pre-existing cardiomyocytes. Nature, 493, 433–436. https://doi.org/10.1038/nature11682.

Article  CAS  PubMed  Google Scholar 

Porrello, E. R., Mahmoud, A. I., Simpson, E., Hill, J. A., Richardson, J. A., Olson, E. N., & Sadek, H. A. (2011). Transient regenerative potential of the neonatal mouse heart. Science, 331, 1078–1080. https://doi.org/10.1126/science.1200708.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yu, W., Huang, X., Tian, X., Zhang, H., He, L., Wang, Y., Nie, Y., Hu, S., Lin, Z., Zhou, B., Pu, W., Lui, K. O., & Zhou, B. (2016). GATA4 regulates Fgf16 to promote heart repair after injury. Development, 143, 936–949. https://doi.org/10.1242/dev.130971.

Article  CAS  PubMed  Google Scholar 

Fu, W., Ren, H., Shou, J., Liao, Q., Li, L., Shi, Y., Jose, P. A., Zeng, C., & Wang, W. E. (2022). Loss of NPPA-AS1 promotes heart regeneration by stabilizing SFPQ-NONO heteromer-induced DNA repair. Basic Research in Cardiology, 117, 10 https://doi.org/10.1007/s00395-022-00921-y.

Article  CAS  PubMed  Google Scholar 

Fan, Y., Cheng, Y., Li, Y., Chen, B., Wang, Z., Wei, T., Zhang, H., Guo, Y., Wang, Q., Wei, Y., Chen, F., Sha, J., Guo, X., & Wang, L. (2020). Phosphoproteomic analysis of neonatal regenerative myocardium revealed important roles of checkpoint Kinase 1 via activating mammalian target of rapamycin C1/Ribosomal protein S6 Kinase b-1 pathway. Circulation, 141, 1554–1569. https://doi.org/10.1161/circulationaha.119.040747.

Article  CAS  PubMed  Google Scholar 

Willis, M. S., Townley-Tilson, W. H., Kang, E. Y., Homeister, J. W., & Patterson, C. (2010). Sent to destroy: the ubiquitin proteasome system regulates cell signaling and protein quality control in cardiovascular development and disease. Circulation Research, 106, 463–478. https://doi.org/10.1161/circresaha.109.208801.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang, C., Yang, H., & Gao, C. (2019). Potential biomarkers for heart failure. Journal in Cellular Physiology, 234, 9467–9474. https://doi.org/10.1002/jcp.27632.

Article  CAS  Google Scholar 

Li, L. T., Jiang, G., Chen, Q., & Zheng, J. N. (2015). Ki67 is a promising molecular target in the diagnosis of cancer (review). Molecular Medicine Reports, 11, 1566–1572. https://doi.org/10.3892/mmr.2014.2914.

Article  CAS  PubMed  Google Scholar 

Auchampach, J., Han, L., Huang, G. N., Kühn, B., Lough, J. W., O’Meara, C. C., Payumo, A. Y., Rosenthal, N. A., Sucov, H. M., Yutzey, K. E., & Patterson, M. (2022). Measuring cardiomyocyte cell-cycle activity and proliferation in the age of heart regeneration. American Journal in Physiological Heart Circulation Physiology, 322, H579–h596. https://doi.org/10.1152/ajpheart.00666.2021.

Article  CAS  Google Scholar 

Wang, X., Li, Y., He, M., Kong, X., Jiang, P., Liu, X., Diao, L., Zhang, X., Li, H., Ling, X., Xia, S., Liu, Z., Liu, Y., Cui, C. P., Wang, Y., Tang, L., Zhang, L., He, F., & Li, D. (2022). UbiBrowser 2.0: a comprehensive resource for proteome-wide known and predicted ubiquitin ligase/deubiquitinase-substrate interactions in eukaryotic species. Nucleic Acids Research, 50, D719–d728. https://doi.org/10.1093/nar/gkab962.

Article  CAS  PubMed  Google Scholar 

Iimori, M., Watanabe, S., Kiyonari, S., Matsuoka, K., Sakasai, R., Saeki, H., Oki, E., Kitao, H., & Maehara, Y. (2016). Phosphorylation of EB2 by Aurora B and CDK1 ensures mitotic progression and genome stability. Nature Communications, 7, 11117 https://doi.org/10.1038/ncomms11117.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhu, W., Zhang, E., Zhao, M., Chong, Z., Fan, C., Tang, Y., Hunter, J. D., Borovjagin, A. V., Walcott, G. P., Chen, J. Y., Qin, G., & Zhang, J. (2018). Regenerative potential of neonatal porcine hearts. Circulation, 138, 2809–2816. https://doi.org/10.1161/circulationaha.118.034886.

Article  PubMed  PubMed Central  Google Scholar 

Sun, X., Han, Q., Luo, H., Pan, X., Ji, Y., Yang, Y., Chen, H., Wang, F., Lai, W., Guan, X., Zhang, Q., Tang, Y., Chu, J., Yu, J., Shou, W., Deng, Y., & Li, X. (2017). Profiling analysis of long non-coding RNAs in early postnatal mouse hearts. Scientific Reports, 7, 43485 https://doi.org/10.1038/srep43485.

Article  PubMed  PubMed Central  Google Scholar 

Alkass, K., Panula, J., Westman, M., Wu, T. D., Guerquin-Kern, J. L., & Bergmann, O. (2015). No evidence for cardiomyocyte number expansion in preadolescent mice. Cell, 163, 1026–1036. https://doi.org/10.1016/j.cell.2015.10.035.

Article  CAS  PubMed  Google Scholar 

Hosseini, S. M., Okoye, I., Chaleshtari, M. G., Hazhirkarzar, B., Mohamadnejad, J., Azizi, G., Hojjat-Farsangi, M., Mohammadi, H., Shotorbani, S. S., & Jadidi-Niaragh, F. (2019). E2 ubiquitin-conjugating enzymes in cancer: implications for immunotherapeutic interventions. Clinica Chimica Acta, 498, 126–134. https://doi.org/10.1016/j.cca.2019.08.020.

Article  CAS  Google Scholar 

Tamamori-Adachi, M., Hayashida, K., Nobori, K., Omizu, C., Yamada, K., Sakamoto, N., Kamura, T., Fukuda, K., Ogawa, S., Nakayama, K. I., & Kitajima, S. (2004). Down-regulation of p27Kip1 promotes cell proliferation of rat neonatal cardiomyocytes induced by nuclear expression of cyclin D1 and CDK4. evidence for impaired Skp2-dependent degradation of p27 in terminal differentiation. The Journal of Biological Chemistry, 279, 50429–50436. https://doi.org/10.1074/jbc.M403084200.

Article  CAS  PubMed  Google Scholar 

Li, B., Li, M., Li, X., Li, H., Lai, Y., Huang, S., He, X., Si, X., Zheng, H., Liao, W., Liao, Y., & Bin, J. (2019). Sirt1-inducible deacetylation of p21 promotes cardiomyocyte proliferation. Aging (Albany NY), 11, 12546–12567. https://doi.org/10.18632/aging.102587.

Article  CAS  PubMed  Google Scholar 

Huang, S., Li, X., Zheng, H., Si, X., Li, B., Wei, G., Li, C., Chen, Y., Chen, Y., Liao, W., Liao, Y., & Bin, J. (2019). Loss of super-enhancer-regulated circRNA Nfix induces cardiac regeneration after myocardial infarction in adult mice. Circulation, 139, 2857–2876. https://doi.org/10.1161/circulationaha.118.038361.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhong, F. J., Li, Y. M., Xu, C., Sun, B., Wang, J. L., & Yang, L. Y. (2021). EB2 promotes hepatocellular carcinoma proliferation and metastasis via MAPK/ERK pathway by modulating microtubule dynamics. Clinical Science (Lond), 135, 847–864. https://doi.org/10.1042/cs20201500.

Article  CAS  Google Scholar 

留言 (0)

沒有登入
gif