Zinc improves Denosumab and eldecalcitol efficacy for bone mineral density in patients with hypozincemia

Devine A, Rosen C, Mohan S, Baylink D, Prince RL (1998) Effects of zinc and other nutritional factors on insulin-like growth factor I and insulin-like growth factor binding proteins in postmenopausal women. Am J Clin Nutr 68:200–206. https://doi.org/10.1093/ajcn/68.1.200

Article  CAS  PubMed  Google Scholar 

Ovesen J, Moller-Madsen B, Thomsen JS, Danscher G, Mosekilde L (2001) The positive effects of zinc on skeletal strength in growing rats. Bone 29:565–570. https://doi.org/10.1016/s8756-3282(01)00616-0

Article  CAS  PubMed  Google Scholar 

Cousins RJ (1979) Regulatory aspects of zinc metabolism in liver and intestine. Nutr Rev 37:97–103. https://doi.org/10.1111/j.1753-4887.1979.tb02221.x

Article  CAS  PubMed  Google Scholar 

Hyun TH, Barrett-Connor E, Milne DB (2004) Zinc intakes and plasma concentrations in men with osteoporosis: the Rancho Bernardo Study. Am J Clin Nutr 80:715–721. https://doi.org/10.1093/ajcn/80.3.715

Article  CAS  PubMed  Google Scholar 

Methfessel AH, Spencer H (1973) Zinc metabolism in the rat. I. Intestinal absorption of zinc. J Appl Physiol 34:58–62. https://doi.org/10.1152/jappl.1973.34.1.58

Article  CAS  PubMed  Google Scholar 

Wessells KR, Brown KH (2012) Estimating the global prevalence of zinc deficiency: results based on zinc availability in national food supplies and the prevalence of stunting. PLoS ONE 7:e50568. https://doi.org/10.1371/journal.pone.0050568

Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Kodama H, Tanaka M, Naito Y, Katayama K, Moriyama M (2020) Japan’s practical guidelines for zinc deficiency with a particular focus on taste disorders, inflammatory bowel disease, and liver cirrhosis. Int J Mol Sci. https://doi.org/10.3390/ijms21082941

Article  PubMed  PubMed Central  Google Scholar 

Bergman B (1970) The zinc concentration in hard and soft tissues of the rat. The influence of zinc deficient feeding. Acta Odontol Scand 28:435–440

Article  CAS  PubMed  Google Scholar 

Miller JK, Miller WJ (1962) Experimental zinc deficiency and recovery of calves. J Nutr 76:467–474. https://doi.org/10.1093/jn/76.4.467

Article  CAS  PubMed  Google Scholar 

Nielsen FH, Dowdy RP, Ziporin ZZ (1970) Effect of zinc deficiency on sulfur-35 and hexosamine metabolism in the epiphyseal plate and primary spongiosa of the chick. J Nutr 100:903–907. https://doi.org/10.1093/jn/100.8.903

Article  CAS  PubMed  Google Scholar 

Wing KR (1975) Turnover of 65Zn and 82Sr in growing rats. A comparative investigation. Acta Radiol Ther Phys Biol 14:1–24. https://doi.org/10.3109/02841867509132257

Article  CAS  PubMed  Google Scholar 

Yamaguchi M, Sakashita T (1986) Enhancement of vitamin D3 effect on bone metabolism in weanling rats orally administered zinc sulphate. Acta Endocrinol (Copenh) 111:285–288. https://doi.org/10.1530/acta.0.1110285

Article  CAS  PubMed  Google Scholar 

Atik OS, Uslu MM, Eksioglu F, Satana T (2006) Etiology of senile osteoporosis: a hypothesis. Clin Orthop Relat Res 443:25–27. https://doi.org/10.1097/01.blo.0000200235.76565.c8

Article  PubMed  Google Scholar 

Bougle DL, Sabatier JP, Guaydier-Souquieres G, Guillon-Metz F, Laroche D, Jauzac P, Bureau F (2004) Zinc status and bone mineralisation in adolescent girls. J Trace Elem Med Biol 18:17–21. https://doi.org/10.1016/j.jtemb.2004.03.001

Article  CAS  PubMed  Google Scholar 

Mutlu M, Argun M, Kilic E, Saraymen R, Yazar S (2007) Magnesium, zinc and copper status in osteoporotic, osteopenic and normal post-menopausal women. J Int Med Res 35:692–695. https://doi.org/10.1177/147323000703500514

Article  CAS  PubMed  Google Scholar 

Ovesen J, Moller-Madsen B, Nielsen PT, Christensen PH, Simonsen O, Hoeck HC, Laursen MB, Thomsen JS (2009) Differences in zinc status between patients with osteoarthritis and osteoporosis. J Trace Elem Med Biol 23:1–8. https://doi.org/10.1016/j.jtemb.2008.12.001

Article  CAS  PubMed  Google Scholar 

Suzuki T, Kajita Y, Katsumata S, Matsuzaki H, Suzuki K (2015) Zinc deficiency increases serum concentrations of parathyroid hormone through a decrease in serum calcium and induces bone fragility in rats. J Nutr Sci Vitaminol (Tokyo) 61:382–390. https://doi.org/10.3177/jnsv.61.382

Article  CAS  PubMed  Google Scholar 

Kishi S, Yamaguchi M (1994) Inhibitory effect of zinc compounds on osteoclast-like cell formation in mouse marrow cultures. Biochem Pharmacol 48:1225–1230. https://doi.org/10.1016/0006-2952(94)90160-0

Article  CAS  PubMed  Google Scholar 

Moonga BS, Dempster DW (1995) Zinc is a potent inhibitor of osteoclastic bone resorption in vitro. J Bone Miner Res 10:453–457. https://doi.org/10.1002/jbmr.5650100317

Article  CAS  PubMed  Google Scholar 

Hadley KB, Newman SM, Hunt JR (2010) Dietary zinc reduces osteoclast resorption activities and increases markers of osteoblast differentiation, matrix maturation, and mineralization in the long bones of growing rats. J Nutr Biochem 21:297–303. https://doi.org/10.1016/j.jnutbio.2009.01.002

Article  CAS  PubMed  Google Scholar 

Lacey DL, Boyle WJ, Simonet WS, Kostenuik PJ, Dougall WC, Sullivan JK, San Martin J, Dansey R (2012) Bench to bedside: elucidation of the OPG-RANK-RANKL pathway and the development of denosumab. Nat Rev Drug Discov 11:401–419. https://doi.org/10.1038/nrd3705

Article  CAS  PubMed  Google Scholar 

Brown JP, Prince RL, Deal C, Recker RR, Kiel DP, de Gregorio LH, Hadji P, Hofbauer LC, Alvaro-Gracia JM, Wang H, Austin M, Wagman RB, Newmark R, Libanati C, San Martin J, Bone HG (2009) Comparison of the effect of denosumab and alendronate on BMD and biochemical markers of bone turnover in postmenopausal women with low bone mass: a randomized, blinded, phase 3 trial. J Bone Miner Res 24:153–161. https://doi.org/10.1359/jbmr.0809010

Article  CAS  PubMed  Google Scholar 

Brown JP, Roux C, Ho PR, Bolognese MA, Hall J, Bone HG, Bonnick S, van den Bergh JP, Ferreira I, Dakin P, Wagman RB, Recknor C (2014) Denosumab significantly increases bone mineral density and reduces bone turnover compared with monthly oral ibandronate and risedronate in postmenopausal women who remained at higher risk for fracture despite previous suboptimal treatment with an oral bisphosphonate. Osteoporos Int 25:1953–1961. https://doi.org/10.1007/s00198-014-2692-7

Article  CAS  PubMed  Google Scholar 

Roux C, Hofbauer LC, Ho PR, Wark JD, Zillikens MC, Fahrleitner-Pammer A, Hawkins F, Micaelo M, Minisola S, Papaioannou N, Stone M, Ferreira I, Siddhanti S, Wagman RB, Brown JP (2014) Denosumab compared with risedronate in postmenopausal women suboptimally adherent to alendronate therapy: efficacy and safety results from a randomized open-label study. Bone 58:48–54. https://doi.org/10.1016/j.bone.2013.10.006

Article  CAS  PubMed  Google Scholar 

Okawa T, Okawa M, Koike T (2022) Risk factors for poor response to denosumab treatment in Japanese postmenopausal women with osteoporosis. J Bone Miner Metab 40:960–967. https://doi.org/10.1007/s00774-022-01357-z

Article  CAS  PubMed  Google Scholar 

Gür A, Colpan L, Nas K, Cevik R, Saraç J, Erdoğan F, Düz MZ (2002) The role of trace minerals in the pathogenesis of postmenopausal osteoporosis and a new effect of calcitonin. J Bone Miner Metab 20:39–43. https://doi.org/10.1007/s774-002-8445-y

Article  PubMed  Google Scholar 

Atik OS (1983) Zinc and senile osteoporosis. J Am Geriatr Soc 31:790–791. https://doi.org/10.1111/j.1532-5415.1983.tb03400.x

Article  CAS  PubMed  Google Scholar 

Mahdaviroshan M, Golzarand M, Taramsari MR, Mahdaviroshan M (2013) Effect of zinc supplementation on serum zinc and calcium levels in postmenopausal osteoporotic women in Tabriz, Islamic Republic of Iran. East Mediterr Health J 19:271–275

Article  PubMed  Google Scholar 

Hashizume M, Yamaguchi M (1994) Effect of beta-alanyl-L-histidinato zinc on differentiation of osteoblastic MC3T3-E1 cells: increases in alkaline phosphatase activity and protein concentration. Mol Cell Biochem 131:19–24. https://doi.org/10.1007/bf01075720

Article  CAS  PubMed  Google Scholar 

Yamaguchi M, Kishi S (1996) Zinc compounds inhibit osteoclast-like cell formation at the earlier stage of rat marrow culture but not osteoclast function. Mol Cell Biochem 158:171–177. https://doi.org/10.1007/bf00225843

Article  CAS  PubMed  Google Scholar 

Yamaguchi M, Uchiyama S (2004) Receptor activator of NF-kappaB ligand-stimulated osteoclastogenesis in mouse marrow culture is suppressed by zinc in vitro. Int J Mol Med 14:81–85

CAS  PubMed  Google Scholar 

Miller PD (2009) Denosumab: anti-RANKL antibody. Curr Osteoporos Rep 7:18–22. https://doi.org/10.1007/s11914-009-0004-5

Article  PubMed  Google Scholar 

Mohd Yusof H, Abdul Rahman N, Mohamad R, Zaidan UH, Samsudin AA (2022) Influence of dietary biosynthesized zinc oxide nanoparticles on broiler zinc uptake, bone quality, and antioxidative status. Animals (Basel). https://doi.org/10.3390/ani13010115

Article  PubMed 

留言 (0)

沒有登入
gif