Sirtuins in kidney health and disease

Guarente, L. & Franklin, H. Epstein lecture: sirtuins, aging, and medicine. N. Engl. J. Med. 364, 2235–2244 (2011).

Article  CAS  PubMed  Google Scholar 

Imai, S., Armstrong, C. M., Kaeberlein, M. & Guarente, L. Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase. Nature 403, 795–800 (2000).

Article  CAS  PubMed  Google Scholar 

Tissenbaum, H. A. & Guarente, L. Increased dosage of a sir-2 gene extends lifespan in Caenorhabditis elegans. Nature 410, 227–230 (2001).

Article  CAS  PubMed  Google Scholar 

Rogina, B. & Helfand, S. L. Sir2 mediates longevity in the fly through a pathway related to calorie restriction. Proc. Natl Acad. Sci. USA 101, 15998–16003 (2004).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kanfi, Y. et al. The sirtuin SIRT6 regulates lifespan in male mice. Nature 483, 218–221 (2012).

Article  CAS  PubMed  Google Scholar 

Burnett, C. et al. Absence of effects of Sir2 overexpression on lifespan in C. elegans and Drosophila. Nature 477, 482–485 (2011).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Satoh, A. et al. Sirt1 extends life span and delays aging in mice through the regulation of Nk2 homeobox 1 in the DMH and LH. Cell Metab. 18, 416–430 (2013).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Benigni, A. et al. Sirt3 deficiency shortens life span and impairs cardiac mitochondrial function rescued by Opa1 gene transfer. Antioxid. Redox Signal. 31, 1255–1271 (2019).

Article  CAS  PubMed  Google Scholar 

Mostoslavsky, R. et al. Genomic instability and aging-like phenotype in the absence of mammalian SIRT6. Cell 124, 315–329 (2006).

Article  CAS  PubMed  Google Scholar 

Yuan, H. & Marmorstein, R. Structural basis for sirtuin activity and inhibition. J. Biol. Chem. 287, 42428–42435 (2012).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kiran, S. et al. Intracellular distribution of human SIRT7 and mapping of the nuclear/nucleolar localization signal. FEBS J. 280, 3451–3466 (2013).

Article  CAS  PubMed  Google Scholar 

Tanner, K. G., Landry, J., Sternglanz, R. & Denu, J. M. Silent information regulator 2 family of NAD-dependent histone/protein deacetylases generates a unique product, 1-O-acetyl-ADP-ribose. Proc. Natl Acad. Sci. USA 97, 14178–14182 (2000).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Vaquero, A. et al. Human SirT1 interacts with histone H1 and promotes formation of facultative heterochromatin. Mol. Cell 16, 93–105 (2004).

Article  CAS  PubMed  Google Scholar 

Jin, Q. et al. Cytoplasm-localized SIRT1 enhances apoptosis. J. Cell Physiol. 213, 88–97 (2007).

Article  CAS  PubMed  Google Scholar 

Tanno, M., Sakamoto, J., Miura, T., Shimamoto, K. & Horio, Y. Nucleocytoplasmic shuttling of the NAD+-dependent histone deacetylase SIRT1. J. Biol. Chem. 282, 6823–6832 (2007).

Article  CAS  PubMed  Google Scholar 

Li, Y., Xu, W., McBurney, M. W. & Longo, V. D. SirT1 inhibition reduces IGF-I/IRS-2/Ras/ERK1/2 signaling and protects neurons. Cell Metab. 8, 38–48 (2008).

Article  PubMed  PubMed Central  Google Scholar 

Hisahara, S. et al. Histone deacetylase SIRT1 modulates neuronal differentiation by its nuclear translocation. Proc. Natl Acad. Sci. USA 105, 15599–15604 (2008).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tennen, R. I. & Chua, K. F. Chromatin regulation and genome maintenance by mammalian SIRT6. Trends Biochem. Sci. 36, 39–46 (2011).

Article  CAS  PubMed  Google Scholar 

Tsai, Y.-C., Greco, T. M., Boonmee, A., Miteva, Y. & Cristea, I. M. Functional proteomics establishes the interaction of SIRT7 with chromatin remodeling complexes and expands its role in regulation of RNA polymerase I transcription. Mol. Cell. Proteom. 11, 60–76 (2012).

Article  CAS  Google Scholar 

Dryden, S. C., Nahhas, F. A., Nowak, J. E., Goustin, A.-S. & Tainsky, M. A. Role for human SIRT2 NAD-dependent deacetylase activity in control of mitotic exit in the cell cycle. Mol. Cell. Biol. 23, 3173–3185 (2003).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Nekooki-Machida, Y. & Hagiwara, H. Role of tubulin acetylation in cellular functions and diseases. Med. Mol. Morphol. 53, 191–197 (2020).

Article  CAS  PubMed  Google Scholar 

Serrano, L. et al. The tumor suppressor SirT2 regulates cell cycle progression and genome stability by modulating the mitotic deposition of H4K20 methylation. Genes. Dev. 27, 639–653 (2013).

Article  CAS  PubMed  PubMed Central  Google Scholar 

North, B. J. et al. SIRT2 induces the checkpoint kinase BubR1 to increase lifespan. EMBO J. 33, 1438–1453 (2014).

Article  MathSciNet  CAS  PubMed  PubMed Central  Google Scholar 

Baeza, J., Smallegan, M. J. & Denu, J. M. Mechanisms and dynamics of protein acetylation in mitochondria. Trends Biochem. Sci. 41, 231–244 (2016).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lombard, D. B. et al. Mammalian Sir2 homolog SIRT3 regulates global mitochondrial lysine acetylation. Mol. Cell. Biol. 27, 8807–8814 (2007).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Iwahara, T., Bonasio, R., Narendra, V. & Reinberg, D. SIRT3 functions in the nucleus in the control of stress-related gene expression. Mol. Cell. Biol. 32, 5022–5034 (2012).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhang, X. et al. Molecular basis for hierarchical histone de-β-hydroxybutyrylation by SIRT3. Cell Discov. 5, 35 (2019).

Article  PubMed  PubMed Central  Google Scholar 

Scher, M. B., Vaquero, A. & Reinberg, D. SirT3 is a nuclear NAD+-dependent histone deacetylase that translocates to the mitochondria upon cellular stress. Genes. Dev. 21, 920–928 (2007).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Guarente, L. Calorie restriction and sirtuins revisited. Genes. Dev. 27, 2072–2085 (2013).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Nakagawa, T., Lomb, D. J., Haigis, M. C. & Guarente, L. SIRT5 deacetylates carbamoyl phosphate synthetase 1 and regulates the urea cycle. Cell 137, 560–570 (2009).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Du, J. et al. Sirt5 is an NAD-dependent protein lysine demalonylase and desuccinylase. Science 334, 806–809 (2011).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Houtkooper, R. H., Pirinen, E. & Auwerx, J. Sirtuins as regulators of metabolism and healthspan. Nat. Rev. Mol. Cell Biol. 13, 225–238 (2012).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ahn, B.-H. et al. A role for the mitochondrial deacetylase Sirt3 in regulating energy homeostasis. Proc. Natl Acad. Sci. USA 105, 14447–14452 (2008).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Finley, L. W. S. et al. Succinate dehydrogenase is a direct target of sirtuin 3 deacetylase activity. PLoS One 6, e23295 (2011).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rahman, M. et al. Drosophila Sirt2/mammalian SIRT3 deacetylates ATP synthase β and regulates complex V activity. J. Cell Biol. 206, 289–305 (2014).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yang, Y. et al. NAD+-dependent deacetylase SIRT3 regulates mitochondrial protein synthesis by deacetylation of the ribosom

留言 (0)

沒有登入
gif