Advances and challenges in measuring hepatic glucose uptake with FDG PET: implications for diabetes research

Iozzo P, Geisler F, Oikonen V et al (2003) Insulin stimulates liver glucose uptake in humans: an 18F-FDG PET study. J Nucl Med 44(5):682–689

CAS  PubMed  Google Scholar 

Johansson E, Lubberink M, Heurling K et al (2018) Whole-body imaging of tissue-specific insulin sensitivity and body composition by using an integrated PET/MR system: a feasibility study. Radiology 286(1):271–278. https://doi.org/10.1148/radiol.2017162949

Article  PubMed  Google Scholar 

Rijzewijk LJ, van der Meer RW, Lubberink M et al (2010) Liver fat content in type 2 diabetes: relationship with hepatic perfusion and substrate metabolism. Diabetes 59(11):2747–2754. https://doi.org/10.2337/db09-1201

Article  CAS  PubMed  PubMed Central  Google Scholar 

Keramida G, Peters AM (2017) Fasting hepatic glucose uptake is higher in men than women. Physiol Rep 5(11):e13174. https://doi.org/10.14814/phy2.13174

Article  CAS  PubMed  PubMed Central  Google Scholar 

Thorens B (2015) GLUT2, glucose sensing and glucose homeostasis. Diabetologia 58(2):221–32. https://doi.org/10.1007/s00125-014-3451-1

Article  CAS  PubMed  Google Scholar 

Agius L, Peak M (1993) Intracellular binding of glucokinase in hepatocytes and translocation by glucose, fructose and insulin. Biochem J 296(Pt 3):785–796. https://doi.org/10.1042/bj2960785

Article  CAS  PubMed  PubMed Central  Google Scholar 

Keramida G, Peters AM (2020) FDG PET/CT of the non-malignant liver in an increasingly obese world population. Clin Physiol Funct Imaging 40(5):304–319. https://doi.org/10.1111/cpf.12651

Article  CAS  PubMed  Google Scholar 

Ishizu K, Nishizawa S, Yonekura Y et al (1994) Effects of hyperglycemia on FDG uptake in human brain and glioma. J Nucl Med 35(7):1104–1109

CAS  PubMed  Google Scholar 

Thie JA (1995) Clarification of a fractional uptake concept. J Nucl Med 36(4):711–712

CAS  PubMed  Google Scholar 

Boersma GJ, Johansson E, Pereira MJ et al (2018) Altered glucose uptake in muscle, visceral adipose tissue, and brain predict whole-body insulin resistance and may contribute to the development of type 2 diabetes: a combined PET/MR study. Horm Metab Res 50(8):627–639. https://doi.org/10.1055/a-0643-4739

Article  CAS  PubMed  Google Scholar 

Trägårdh M, Møller N, Sørensen M (2015) Methodologic considerations for quantitative 18F-FDG PET/CT studies of hepatic glucose metabolism in healthy subjects. J Nucl Med 56(9):1366–1371. https://doi.org/10.2967/jnumed.115.154211

Article  CAS  PubMed  Google Scholar 

Sokoloff L, Reivich M, Kennedy C et al (1977) The [14C]deoxyglucose method for the measurement of local cerebral glucose utilization: theory, procedure, and normal values in the conscious and anesthetized albino rat. J Neurochem 28(5):897–916. https://doi.org/10.1111/j.1471-4159.1977.tb10649.x

Article  CAS  PubMed  Google Scholar 

Bender D, Munk OL, Feng H-Q, Keiding S (2001) Metabolites of 18F-FDG and 3-O-11C-methylglucose in pig liver. J Nucl Med 42(11):1673–1678

CAS  PubMed  Google Scholar 

Iozzo P, Jarvisalo MJ, Kiss J et al (2007) Quantification of liver glucose metabolism by positron emission tomography: validation study in pigs. Gastroenterology 132(2):531–542. https://doi.org/10.1053/j.gastro.2006.12.040

Article  CAS  PubMed  Google Scholar 

Patlak CS, Blasberg RG, Fenstermacher JD (1983) Graphical evaluation of blood-to-brain transfer constants from multiple-time uptake data. J Cereb Blood Flow Metab 3(1):1–7. https://doi.org/10.1038/jcbfm.1983.1

Article  CAS  PubMed  Google Scholar 

Patlak CS, Blasberg RG (1985) Graphical evaluation of blood-to-brain transfer constants from multiple-time uptake data. Generalizations. J Cereb Blood Flow Metab 5(4):584–590. https://doi.org/10.1038/jcbfm.1985.87

Article  CAS  PubMed  Google Scholar 

Graham MM, Muzi M, Spence AM et al (2002) The FDG lumped constant in normal human brain. J Nucl Med 43(9):1157–1166

PubMed  Google Scholar 

Horsager J, Munk OL, Sorensen M (2015) Metabolic liver function measured in vivo by dynamic (18)F-FDGal PET/CT without arterial blood sampling. EJNMMI Res 5:32. https://doi.org/10.1186/s13550-015-0110-6

Article  CAS  PubMed  PubMed Central  Google Scholar 

de Geus-Oei LF, Visser EP, Krabbe PF et al (2006) Comparison of image-derived and arterial input functions for estimating the rate of glucose metabolism in therapy-monitoring 18F-FDG PET studies. J Nucl Med 47(6):945–949

PubMed  Google Scholar 

Brooks DC, Black PR, Arcangeli MA, Aoki TT, Wilmore DW (1989) The heated dorsal hand vein: an alternative arterial sampling site. J Parenter Enteral Nutr 13(1):102–105. https://doi.org/10.1177/0148607189013001102

Article  CAS  Google Scholar 

Gaiani S, Bolondi L, Li Bassi S, Santi V, Zironi G, Barbara L (1989) Effect of meal on portal hemodynamics in healthy humans and in patients with chronic liver disease. Hepatology 9(6):815–819. https://doi.org/10.1002/hep.1840090604

Article  CAS  PubMed  Google Scholar 

Thomsen C, Ståhlberg F, Henriksen O (1993) Quantification of portal venous blood flow during fasting and after a standardized meal — a MRI phase-mapping study. Eur Radiol 3(3):242–247. https://doi.org/10.1007/BF00425902

Article  Google Scholar 

Zuo Y, Sarkar S, Corwin MT, Olson K, Badawi RD, Wang G (2019) Structural and practical identifiability of dual-input kinetic modeling in dynamic PET of liver inflammation. Phys Med Biol 64(17):175023. https://doi.org/10.1088/1361-6560/ab1f29

Article  PubMed  PubMed Central  Google Scholar 

Brix G, Ziegler SI, Bellemann ME et al (2001) Quantification of [18F] FDG uptake in the normal liver using dynamic PET: impact and modeling of the dual hepatic blood supply. J Nucl Med 42(8):1265–1273

CAS  PubMed  Google Scholar 

Kudomi N, Järvisalo MJ, Kiss J et al (2009) Non-invasive estimation of hepatic glucose uptake from [18F]FDG PET images using tissue-derived input functions. Eur J Nucl Med Mol Imaging 36(12):2014–2026. https://doi.org/10.1007/s00259-009-1140-y

Article  CAS  PubMed  Google Scholar 

Garbarino S, Vivaldi V, Delbary F et al (2015) A new compartmental method for the analysis of liver FDG kinetics in small animal models. EJNMMI Res 5(1):1–9

Article  CAS  Google Scholar 

Vivaldi V, Garbarino S, Caviglia G, Piana M, Sanbuceti G (2013) Compartmental analysis of nuclear imaging data for the quantification of FDG liver metabolism. arXiv:13057435 (Preprint). 31 May. Available from https://doi.org/10.48550/arXiv.1305.7435

Munk OL, Bass L, Roelsgaard K, Bender D, Hansen SB, Keiding S (2001) Liver kinetics of glucose analogs measured in pigs by PET: importance of dual-input blood sampling. J Nucl Med 42(5):795–801

CAS  PubMed  Google Scholar 

Gu F, Wu Q (2023) Quantitation of dynamic total-body PET imaging: recent developments and future perspectives. Eur J Nucl Med Mol Imaging 50:3538–3557. https://doi.org/10.1007/s00259-023-06299-w

Article  PubMed  PubMed Central  Google Scholar 

Immonen H, Hannukainen JC, Iozzo P et al (2014) Effect of bariatric surgery on liver glucose metabolism in morbidly obese diabetic and non-diabetic patients. J Hepatol 60(2):377–383. https://doi.org/10.1016/j.jhep.2013.09.012

Article  CAS  PubMed  Google Scholar 

Wang G, Corwin MT, Olson KA, Badawi RD, Sarkar S (2018) Dynamic PET of human liver inflammation: impact of kinetic modeling with optimization-derived dual-blood input function. Phys Med Biol 63(15):155004. https://doi.org/10.1088/1361-6560/aac8cb

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sarkar S, Corwin MT, Olson KA et al (2019) Pilot study to diagnose nonalcoholic steatohepatitis with dynamic (18)F-FDG PET. AJR Am J Roentgenol 212(3):529–537. https://doi.org/10.2214/AJR.18.20012

Article  PubMed  Google Scholar 

Guzzardi MA, Guiducci L, Campani D et al (2022) Leptin resistance before and after obesity: evidence that tissue glucose uptake underlies adipocyte enlargement and liver steatosis/steatohepatitis in Zucker rats from early-life stages. Int J Obes 46(1):50–58. https://doi.org/10.1038/s41366-021-00941-z

Article  CAS  Google Scholar 

DeFronzo RA, Tobin JD, Andres R (1979) Glucose clamp technique: a method for quantifying insulin secretion and resistance. Am J Physiol 237(3):E214–E223. https://doi.org/10.1152/ajpendo.1979.237.3.E214

Article  CAS  PubMed  Google Scholar 

Duckworth WC, Bennett RG, Hamel FG (1998) Insulin degradation: progress and potential. Endocr Rev 19(5):608–624. https://doi.org/10.1210/edrv.19.5.0349

Article  CAS  PubMed  Google Scholar 

Eaton RP, Allen RC, Schade DS (1983) Hepatic removal of insulin in normal man: dose response to endogenous insulin secretion. J Clin Endocrinol Metab 56(6):1294–1300. https://doi.org/10.1210/jcem-56-6-1294

Article  CAS  PubMed  Google Scholar 

Edgerton DS, Scott M, Farmer B et al (2019) Targeting insulin to the liver corrects defects in glucose metabolism caused by peripheral insulin delivery. JCI Insight 4(7):e126974.

留言 (0)

沒有登入
gif