Emerging Role of Extracellular Vesicles in Intercellular Communication in the Brain: Implications for Neurodegenerative Diseases and Therapeutics

Théry, C., Witwer, K. W., Aikawa, E., Alcaraz, M. J., Anderson, J. D., Andriantsitohaina, R., & Zuba-Surma, E. K. (2018). Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. Journal of Extracellular Vesicles, 7(1), 1535750.

Article  PubMed  PubMed Central  Google Scholar 

Tiwari, S., Kumar, V., Randhawa, S., & Verma, S. K. (2021). Preparation and characterization of extracellular vesicles. American Journal of Reproductive Immunology, 85(2), e13367. https://doi.org/10.1111/aji.13367.

Article  CAS  PubMed  Google Scholar 

Lee, K., Fraser, K., Ghaddar, B., Yang, K., Kim, E., Balaj, L., & Weissleder, R. (2018). Multiplexed profiling of single extracellular vesicles. ACS Nano, 12(1), 494–503. https://doi.org/10.1021/acsnano.7b07060.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Spitzberg, J. D., Ferguson, S., & Yang, K. S., et al. (2023). Multiplexed analysis of EV reveals specific biomarker composition with diagnostic impact. Nature Communications, 14, 1239 https://doi.org/10.1038/s41467-023-36932-z.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Théry, C., Amigorena, S., Raposo, G., & Clayton, A. (2006). Isolation and characterization of exosomes from cell culture supernatants and biological fluids. Current Protocols in Cell Biology, Chapter 3, Unit 3.22. https://doi.org/10.1002/0471143030.cb0322s30.

Article  PubMed  Google Scholar 

Shao, H., Chung, J., Balaj, L., Charest, A., Bigner, D. D., Carter, B. S., & Lee, H. (2012). Protein typing of circulating microvesicles allows real-time monitoring of glioblastoma therapy. Nature Medicine, 18(12), 1835–1840. https://doi.org/10.1038/nm.2994.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cizmar, P., & Yuana, Y. (2017). Detection and characterization of extracellular vesicles by transmission and cryo-transmission electron microscopy. Methods in Molecular Biology, 1660, 221–232. https://doi.org/10.1007/978-1-4939-7253-1_18.

Article  CAS  PubMed  Google Scholar 

Sharma, S., Rasool, H. I., Palanisamy, V., Mathisen, C., Schmidt, M., Wong, D. T., & Gimzewski, J. K. (2010). Structural-mechanical characterization of nanoparticle exosomes in human saliva, using correlative AFM, FESEM, and force spectroscopy. ACS Nano, 4(4), 1921–1926. https://doi.org/10.1021/nn901824n.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Vogel, R., Pal, A. K., & Jambhrunkar, S., et al. (2017). High-resolution single particle zeta potential characterisation of biological nanoparticles using tunable resistive pulse sensing. Scientific Reports, 7(1), 17479.

Article  PubMed  PubMed Central  Google Scholar 

Shimbo, K., Miyaki, S., & Ishitobi, H., et al. (2014). Exosome-formed synthetic microRNA-143 is transferred to osteosarcoma cells and inhibits their migration. Biochemical and Biophysical Research Communications, 445(2), 381–387.

Article  CAS  PubMed  Google Scholar 

Katsuda, T., Kosaka, N., Takeshita, F., & Ochiya, T. (2013). The therapeutic potential of mesenchymal stem cell-derived extracellular vesicles. Proteomics, 13(10-11), 1637–1653.

Article  CAS  PubMed  Google Scholar 

Longjohn, M. N., & Christian, S. L. (2022). Characterizing extracellular vesicles using nanoparticle-tracking analysis. Methods in Molecular Biology, 2508, 353–373. https://doi.org/10.1007/978-1-0716-2376-3_23.

Article  PubMed  Google Scholar 

Lawrie, A. S., Albanyan, A., Cardigan, R. A., Mackie, I. J., & Harrison, P. (2009). Microparticle sizing by dynamic light scattering in fresh-frozen plasma. Vox Sanguinis, 96(3), 206–212.

Article  CAS  PubMed  Google Scholar 

Khan, M. A., Anand, S., Deshmukh, S. K., Singh, S., & Singh, A. P. (2022). Determining the size distribution and integrity of extracellular vesicles by dynamic light scattering. Methods in Molecular Biology, 2413, 165–175. https://doi.org/10.1007/978-1-0716-1896-7_17.

Article  CAS  PubMed  Google Scholar 

Doyle, L. M., & Wang, M. Z. (2019). Overview of extracellular vesicles, their origin, composition, purpose, and methods for exosome isolation and analysis. Cells, 8(7), 727.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lischnig, A., Bergqvist, M., Ochiya, T., & Lässer, C. (2022). Quantitative proteomics identifies proteins enriched in large and small extracellular vesicles. Molecular & Cellular Proteomics, 21(9), 100273. https://doi.org/10.1016/j.mcpro.2022.100273.

Article  CAS  Google Scholar 

Kreimer, S., Belov, A. M., Ghiran, I., Murthy, S. K., Frank, D. A., & Ivanov, A. R. (2015). Mass-spectrometry-based molecular characterization of extracellular vesicles: lipidomics and proteomics. Journal of Proteome Research, 14(6), 2367–2384. https://doi.org/10.1021/pr501279t.

Article  CAS  PubMed  Google Scholar 

Blandin, A., Dugail, I., & Hilairet, G., et al. (2023). Lipidomic analysis of adipose-derived extracellular vesicles reveals specific EV lipid sorting informative of the obesity metabolic state. Cell Reports, 42(3), 112169. https://doi.org/10.1016/j.celrep.2023.112169.

Article  CAS  PubMed  Google Scholar 

Lin, L., Liang, Y., Cao, T., Huang, Y., Li, W., Li, J., & Li, L. (2023). Transcriptome profiling and ceRNA network of small extracellular vesicles from resting and degranulated mast cells. Epigenomics, 15(17), 845–862. https://doi.org/10.2217/epi-2023-0175.

Article  CAS  PubMed  Google Scholar 

Welsh, J. A., Arkesteijn, G. J. A., Bremer, M., Cimorelli, M., Dignat-George, F., Giebel, B., & van der Pol, E. (2023). A compendium of single extracellular vesicle flow cytometry. Journal of Extracellular Vesicles, 12(2), e12299. https://doi.org/10.1002/jev2.12299.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mangolini, V., Gualerzi, A., Picciolini, S., Rodà, F., Del Prete, A., Forleo, L., & Bedoni, M. (2023). Biochemical characterization of human salivary extracellular vesicles as a valuable source of biomarkers. Biology, 12(2), 227. https://doi.org/10.3390/biology12020227.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Krylova, S. V., & Feng, D. (2023). The machinery of exosomes: biogenesis, release, and uptake. International Journal of Molecular Sciences, 24(2), 1337. https://doi.org/10.3390/ijms24021337.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Raghav, A., Tripathi, P., Mishra, B. K., Jeong, G. B., Banday, S., Gautam, K. A., & Ahmad, J. (2021). Mesenchymal stromal cell-derived tailored exosomes treat bacteria-associated diabetes foot ulcers: A customized approach from bench to bed. Frontiers in Microbiology, 12, 712588. https://doi.org/10.3389/fmicb.2021.712588.

Article  PubMed  PubMed Central  Google Scholar 

Kim, H. J., Kim, G., Lee, J., Lee, Y., & Kim, J. H. (2022). Secretome of stem cells: Roles of extracellular vesicles in diseases, stemness, differentiation, and reprogramming. Tissue Engineering and Regenerative Medicine, 19(1), 19–33. https://doi.org/10.1007/s13770-021-00406-4.

Article  CAS  PubMed  Google Scholar 

Gupta, S., Krishnakumar, V., Soni, N., Rao, E. P., Banerjee, A., & Mohanty, S. (2022). Comparative proteomic profiling of Small Extracellular vesicles derived from iPSCs and tissue-specific mesenchymal stem cells. Experimental Cell Research, 420(2), 113354. https://doi.org/10.1016/j.yexcr.2022.113354.

Article  CAS  PubMed  Google Scholar 

Jahanbani, et al. (2021). miR-133b-3p in extracellular vesicles from bone marrow mesenchymal stem cells alleviates Parkinson’s disease via regulating MERTK-mediated nuclear autophagy. Theranostics, 11(23), 11550–11567. https://doi.org/10.7150/thno.61016.

Article  Google Scholar 

Trajkovic, K., et al. (2008). Endocytosis regulates exosome secretion and selective accumulation of miRNAs in colorectal cancer cells. Nature Communications, 4, 1229. https://doi.org/10.1038/ncomms2328

Théry, C., et al. (2018). Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. Journal of Extracellular Vesicles, 7(1), 1535750. https://doi.org/10.1080/20013078.2018.1535750.

Article  PubMed  PubMed Central  Google Scholar 

Park, S. Y., Kim, D. S., Kim, H. M., Lee, J. K., Hwang, D. Y., Kim, T. H., You, S., & Han, D. K. (2022). Human mesenchymal stem cell-derived extracellular vesicles promote neural differentiation of neural progenitor cells. International Journal of Molecular Sciences, 23(13), 7047. https://doi.org/10.3390/ijms23137047.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rädler, J., Gupta, D., Zickler, A., & Andaloussi, S. E. (2023). Exploiting the biogenesis of extracellular vesicles for bioengineering and therapeutic cargo loading. Molecular Therapy, 31(5), 1231–1250. https://doi.org/10.1016/j.ymthe.2023.02.013.

Article  CAS  PubMed  Google Scholar 

Santavanond, J. P., Rutter, S. F., Atkin-Smith, G. K., & Poon, I. K. H. (2021). Apoptotic bodies: mechanism of formation, isolation and functional relevance. Sub-Cellular Biochemistry, 97, 61–88. https://doi.org/10.1007/978-3-030-67171-6_4.

Article  CAS  PubMed  Google Scholar 

Li, M., Liao, L., & Tian, W. (2020). Extracellular vesicles derived from apoptotic cells: An essential link between death and regeneration. Frontiers in Cell and Developmental Biology, 8, 573511. https://doi.org/10.3389/fcell.2020.573511.

Article  PubMed  PubMed Central  Google Scholar 

留言 (0)

沒有登入
gif