Proteomics revealed an association between ribosome-associated proteins and amyloid beta deposition in Alzheimer's disease

Anisimova AS, Meerson MB, Gerashchenko MV, Kulakovskiy IV, Dmitriev SE, Gladyshev VN (2020) Multifaceted deregulation of gene expression and protein synthesis with age. Proc Natl Acad Sci U S A 117:15581–15590. https://doi.org/10.1073/pnas.2001788117

Article  CAS  PubMed  PubMed Central  Google Scholar 

Association A (2016) 2016 alzheimer’s disease facts and figures. Alzheimers Dement 12:459–509. https://doi.org/10.1016/j.jalz.2016.03.001

Article  Google Scholar 

Awad D, Prattes M, Kofler L, Rossler I, Loibl M, Pertl M, Zisser G, Wolinski H, Pertschy B, Bergler H (2019) Inhibiting Eukaryotic Ribosome Biogenesis. Bmc Biol 17:46. https://doi.org/10.1186/s12915-019-0664-2

Article  PubMed  PubMed Central  Google Scholar 

Ballard C, Gauthier S, Corbett A, Brayne C, Aarsland D, Jones E (2011) Alzheimer’s disease. Lancet 377:1019–1031. https://doi.org/10.1016/S0140-6736(10)61349-9

Article  PubMed  Google Scholar 

Beason-Held LL, Goh JO, An Y, Kraut MA, O’Brien RJ, Ferrucci L, Resnick SM (2013) Changes in brain function occur years before the onset of cognitive impairment. J Neurosci 33:18008–18014. https://doi.org/10.1523/JNEUROSCI.1402-13.2013

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bertram L, Tanzi RE (2019) Alzheimer disease risk genes: 29 and counting. Nat Rev Neurol 15:191–192. https://doi.org/10.1038/s41582-019-0158-4

Article  PubMed  Google Scholar 

Biever A, Valjent E, Puighermanal E (2015) Ribosomal protein s6 phosphorylation in the nervous system: from regulation to function. Front Mol Neurosci 8:75. https://doi.org/10.3389/fnmol.2015.00075

Article  CAS  PubMed  PubMed Central  Google Scholar 

Brandman O, Hegde RS (2016) Ribosome-associated protein quality control. Nat Struct Mol Biol 23:7–15. https://doi.org/10.1038/nsmb.3147

Article  CAS  PubMed  PubMed Central  Google Scholar 

Brookmeyer R, Johnson E, Ziegler-Graham K, Arrighi HM (2007) Forecasting the global burden of alzheimer’s disease. Alzheimers Dement 3:186–191. https://doi.org/10.1016/j.jalz.2007.04.381

Article  PubMed  Google Scholar 

Brookmeyer R, Evans DA, Hebert L, Langa KM, Heeringa SG, Plassman BL, Kukull WA (2011) National estimates of the prevalence of alzheimer’s disease in the united states. Alzheimers Dement 7:61–73. https://doi.org/10.1016/j.jalz.2010.11.007

Article  PubMed  PubMed Central  Google Scholar 

Bu XL, Sun BL, Wang YJ (2021) Prevention and treatment of Alzheimer′s disease: challenges and perspectives. Chin J Neurol 54:635–639. https://doi.org/10.3760/cma.j.cn113694-20210222-00129

Article  Google Scholar 

Budd HS, Aisen PS, Barkhof F, Chalkias S, Chen T, Cohen S, Dent G, Hansson O, Harrison K, von Hehn C, Iwatsubo T, Mallinckrodt C, Mummery CJ, Muralidharan KK, Nestorov I, Nisenbaum L, Rajagovindan R, Skordos L, Tian Y, van Dyck CH, Vellas B, Wu S, Zhu Y, Sandrock A (2022) Two randomized phase 3 studies of aducanumab in early alzheimer’s disease. J Prev Alzheimers Dis 9:197–210. https://doi.org/10.14283/jpad.2022.30

Article  Google Scholar 

Buhr F, Jha S, Thommen M, Mittelstaet J, Kutz F, Schwalbe H, Rodnina MV, Komar AA (2016) Synonymous codons direct cotranslational folding toward different protein conformations. Mol Cell 61:341–351. https://doi.org/10.1016/j.molcel.2016.01.008

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bursac S, Brdovcak MC, Donati G, Volarevic S (2014) Activation of the tumor suppressor p53 upon impairment of ribosome biogenesis. Biochim Biophys Acta 1842:817–830. https://doi.org/10.1016/j.bbadis.2013.08.014

Article  CAS  PubMed  Google Scholar 

Chen GQ, Ham Y (2018) Preclinical Alzheimer′s disease: emergence, challenge and thinking. Chin J Neurol 51:75–78. https://doi.org/10.3760/cma.j.issn.1006-7876.2018.01.017

Article  Google Scholar 

Chinese Society of Dementia and Cognitive Impairment (2022) Chinese expert consensus on the diagnosis and treatment of mild cognitive impairment due to Alzheimer′s disease 2021. Chin J Neurol 55:421–440. https://doi.org/10.3760/cma.j.cn113694-20211004-00679

Article  Google Scholar 

Choe YJ, Park SH, Hassemer T, Korner R, Vincenz-Donnelly L, Hayer-Hartl M, Hartl FU (2016) Failure of rqc machinery causes protein aggregation and proteotoxic stress. Nature 531:191–195. https://doi.org/10.1038/nature16973

Article  CAS  PubMed  Google Scholar 

Ciryam P, Tartaglia GG, Morimoto RI, Dobson CM, Vendruscolo M (2013) Widespread aggregation and neurodegenerative diseases are associated with supersaturated proteins. Cell Rep 5:781–790. https://doi.org/10.1016/j.celrep.2013.09.043

Article  CAS  PubMed  Google Scholar 

Chinese Dementia and Cognitive Disorders Writing Group, and Cognitive Disorders Professional Committee of Neurology Branch of Chinese Medical Doctor Association (2018) 2018 Chinese Guidelines for the Diagnosis and Treatment of Dementia and Cognitive Disorders (2) : Guidelines for the Diagnosis and treatment of Alzheimer's Disease. Natl Med J China 98:971-977. https://doi.org/10.3760/cma.j.issn.0376-2491.2018.13.004

Cummings JL, Cohen S, van Dyck CH, Brody M, Curtis C, Cho W, Ward M, Friesenhahn M, Rabe C, Brunstein F, Quartino A, Honigberg LA, Fuji RN, Clayton D, Mortensen D, Ho C, Paul R (2018) Abby: a phase 2 randomized trial of crenezumab in mild to moderate alzheimer disease. Neurology 90:e1889–e1897. https://doi.org/10.1212/WNL.0000000000005550

Article  CAS  PubMed  PubMed Central  Google Scholar 

De Strooper B, Karran E (2016) The cellular phase of alzheimer’s disease. Cell 164:603–615. https://doi.org/10.1016/j.cell.2015.12.056

Article  CAS  PubMed  Google Scholar 

Dhikav V, Duraiswamy S, Anand KS (2017) Correlation between hippocampal volumes and medial temporal lobe atrophy in patients with alzheimer’s disease. Ann Indian Acad Neurol 20:29–35. https://doi.org/10.4103/0972-2327.199903

Article  PubMed  PubMed Central  Google Scholar 

Egan MF, Kost J, Tariot PN, Aisen PS, Cummings JL, Vellas B, Sur C, Mukai Y, Voss T, Furtek C, Mahoney E, Harper ML, Vandenberghe R, Mo Y, Michelson D (2018) Randomized trial of verubecestat for mild-to-moderate alzheimer’s disease. N Engl J Med 378:1691–1703. https://doi.org/10.1056/NEJMoa1706441

Article  CAS  PubMed  PubMed Central  Google Scholar 

Egan MF, Mukai Y, Voss T, Kost J, Stone J, Furtek C, Mahoney E, Cummings JL, Tariot PN, Aisen PS, Vellas B, Lines C, Michelson D (2019) Further analyses of the safety of verubecestat in the phase 3 epoch trial of mild-to-moderate alzheimer’s disease. Alzheimers Res Ther 11:68. https://doi.org/10.1186/s13195-019-0520-1

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ferri CP, Prince M, Brayne C, Brodaty H, Fratiglioni L, Ganguli M, Hall K, Hasegawa K, Hendrie H, Huang Y, Jorm A, Mathers C, Menezes PR, Rimmer E, Scazufca M (2005) Global prevalence of dementia: a delphi consensus study. Lancet 366:2112–2117. https://doi.org/10.1016/S0140-6736(05)67889-0

Article  PubMed  PubMed Central  Google Scholar 

Fillit H, Green A (2021) Aducanumab and the fda - where are we now? Nat Rev Neurol 17:129–130. https://doi.org/10.1038/s41582-020-00454-9

Article  PubMed  Google Scholar 

Galton CJ, Gomez-Anson B, Antoun N, Scheltens P, Patterson K, Graves M, Sahakian BJ, Hodges JR (2001) Temporal lobe rating scale: application to alzheimer’s disease and frontotemporal dementia. J Neurol Neurosurg Psychiatry 70:165–173. https://doi.org/10.1136/jnnp.70.2.165

Article  CAS  PubMed  PubMed Central  Google Scholar 

Griciuc A, Tanzi RE (2021) The role of innate immune genes in alzheimer’s disease. Curr Opin Neurol 34:228–236. https://doi.org/10.1097/WCO.0000000000000911

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hamed M, Gladbach Y, Moller S, Fischer S, Ernst M, Struckmann S, Storch A, Fuellen G (2018) A workflow for the integrative transcriptomic description of molecular pathology and the suggestion of normalizing compounds, exemplified by parkinson’s disease. Sci Rep 8:7937. https://doi.org/10.1038/s41598-018-25754-5

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hardy J, De Strooper B (2017) Alzheimer’s disease: where next for anti-amyloid therapies? Brain 140:853–855. https://doi.org/10.1093/brain/awx059

Article  PubMed  Google Scholar 

Heggland I, Kvello P, Witter MP (2019) Electrophysiological characterization of networks and single cells in the hippocampal region of a transgenic rat model of alzheimer's disease. Eneuro 6. https://doi.org/10.1523/ENEURO.0448-17.2019.

Hey JA, Kocis P, Hort J, Abushakra S, Power A, Vyhnalek M, Yu JY, Tolar M (2018a) Correction to: discovery and identification of an endogenous metabolite of tramiprosate and its prodrug alz-801 that inhibits beta amyloid oligomer formation in the human brain. CNS Drugs 32:1185. https://doi.org/10.1007/s40263-018-0585-6

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hey JA, Yu JY, Versavel M, Abushakra S, Kocis P, Power A, Kaplan PL, Amedio J, Tolar M (2018b) Clinical pharmacokinetics and safety of alz-801, a novel prodrug of tramiprosate in development for the treatment of alzheimer’s disease. Clin Pharmacokinet 57:315–333. https://doi.org/10.1007/s40262-017-0608-3

Article  CAS  PubMed  Google Scholar 

Hull M, Sadowsky C, Arai H, Le Prince LG, Holstein A, Booth K, Peng Y, Yoshiyama T, Suzuki H, Ketter N, Liu E, Ryan JM (2017) Long-term extensions of randomized vaccination trials of acc-001 and qs-21 in mild to moderate alzheimer’s disease. Curr Alzheimer Res 14:696–708. https://doi.org/10.2174/1567205014666170117101537

Article  CAS  PubMed 

留言 (0)

沒有登入
gif