Therapeutic Strategies for Angiogenesis Based on Endothelial Cell Epigenetics

Sturtzel C. Endothelial cells. Adv Exp Med Biol. 2017;1003:71–91. https://doi.org/10.1007/978-3-319-57613-8_4.

Article  CAS  PubMed  Google Scholar 

Wegner M, Pioruńska-Stolzmann M, Jagodziński PP. The impact of chromatin modification on the development of chronic complications in patients with diabetes. Postepy Hig Med Dosw. 2015;69:964–8. https://doi.org/10.5604/17322693.1165198.

Article  Google Scholar 

Katoh M. Therapeutics targeting angiogenesis: genetics and epigenetics, extracellular miRNAs and signaling networks (Review). Int J Mol Med. 2013;32(4):763–7. https://doi.org/10.3892/ijmm.2013.1444.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cheng C, Wang Y, Xue Q, Huang Y, Wang X, Liao F, et al. CircRnas in atherosclerosis, with special emphasis on the spongy effect of circRnas on miRnas. Cell Cycle. 2023;22(5):527–41. https://doi.org/10.1080/15384101.2022.2133365.

Article  CAS  PubMed  Google Scholar 

Mesquita A, Matsuoka M, Lopes SA, Pernambuco FP, Cruz AS, Nader HB, et al. Nitric oxide regulates adhesiveness, invasiveness, and migration of anoikis-resistant endothelial cells. Braz J Med Biol Res. 2022;55:11612. https://doi.org/10.1590/1414-431X2021e11612.

Article  Google Scholar 

Bahadoran Z, Mirmiran P, Kashfi K, Ghasemi A. Vascular nitric oxide resistance in type 2 diabetes. Cell Death Dis. 2023;14(7):410. https://doi.org/10.1038/s41419-023-05935-5.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Shimokawa H. Reactive oxygen species in cardiovascular health and disease: special references to nitric oxide, hydrogen peroxide, and Rho-kinase. J Clin Biochem Nutri. 2020;66(2):83–91. https://doi.org/10.3164/jcbn.19-119.

Article  CAS  Google Scholar 

Dalal PJ, Muller WA, Sullivan DP. Endothelial cell calcium signaling during barrier function and inflammation. Am J Pathol. 2020;190(3):535–42. https://doi.org/10.1016/j.ajpath.2019.11.004.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wautier JL, Wautier MP. Vascular permeability in diseases. Int J Mol Sci. 2022;23(7):3645. https://doi.org/10.3390/ijms23073645.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dudley AC, Griffioen AW. Pathological angiogenesis: mechanisms and therapeutic strategies. Angiogenesis. 2023;26(3):313–47. https://doi.org/10.1007/s10456-023-09876-7.

Article  PubMed  PubMed Central  Google Scholar 

Parmar D, Apte M. Angiopoietin inhibitors: a review on targeting tumor angiogenesis. Eur J Pharmacol. 2021;899:174021. https://doi.org/10.1016/j.ejphar.2021.174021.

Article  CAS  PubMed  Google Scholar 

Akwii RG, Sajib MS, Zahra FT, Mikelis CM. Role of angiopoietin-2 in vascular physiology and pathophysiology. Cells. 2019;8(5):471. https://doi.org/10.3390/cells8050471.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dalton AC, Shlamkovitch T, Papo N, Barton WA. Constitutive association of Tie1 and Tie2 with endothelial integrins is functionally modulated by angiopoietin-1 and fibronectin. PLoS ONE. 2016;11(10):e0163732. https://doi.org/10.1371/journal.pone.0163732.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Han C, Barakat M, DiPietro LA. Angiogenesis in wound repair: too much of a good thing. Cold Spring Harb Perspect Biol. 2022;14(10):a041225. https://doi.org/10.1101/cshperspect.a041225.

Article  CAS  PubMed  Google Scholar 

Wu X, Reboll MR, Korf-Klingebiel M, Wollert KC. Angiogenesis after acute myocardial infarction. Cardiovasc Res. 2021;117(5):1257–73. https://doi.org/10.1093/cvr/cvaa287.

Article  CAS  PubMed  Google Scholar 

Lugano R, Ramachandran M, Dimberg A. Tumor angiogenesis: causes, consequences, challenges and opportunities. Cell Mol Life Sci: CMLS. 2020;77(9):1745–70. https://doi.org/10.1007/s00018-019-03351-7.

Article  CAS  PubMed  Google Scholar 

Vimalraj S. A concise review of VEGF, PDGF, FGF, Notch, angiopoietin, and HGF signalling in tumor angiogenesis with a focus on alternative approaches and future directions. Int J Biol Macromol. 2022;221:1428–38. https://doi.org/10.1016/j.ijbiomac.2022.09.129.

Article  CAS  PubMed  Google Scholar 

Kaštelan S, Orešković I, Bišćan F, Kaštelan H, Gverović AA. Inflammatory and angiogenic biomarkers in diabetic retinopathy. Biochemia Medica. 2020;30(3):030502. https://doi.org/10.11613/BM.2020.030502.

Article  PubMed  PubMed Central  Google Scholar 

Li Y. Modern epigenetics methods in biological research. Methods. 2021;187:104–13. https://doi.org/10.1016/j.ymeth.2020.06.022.

Article  CAS  PubMed  Google Scholar 

Peixoto P, Cartron PF, Serandour AA, Hervouet E. From 1957 to nowadays: a brief history of epigenetics. Int J Mol Sci. 2020;21(20):7571. https://doi.org/10.3390/ijms21207571.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Greenberg M, Bourc’his D. The diverse roles of DNA methylation in mammalian development and disease. Nat Rev Mol Cell Biol. 2019;20(10):590–607. https://doi.org/10.1038/s41580-019-0159-6.

Article  CAS  PubMed  Google Scholar 

Bure IV, Nemtsova MV, Kuznetsova EB. Histone modifications and non-coding RNAs: mutual epigenetic regulation and role in pathogenesis. Int J Mol Sci. 2022;23(10):5801. https://doi.org/10.3390/ijms23105801.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li L, Wang M, Ma Q, Ye J, Sun G. Role of glycolysis in the development of atherosclerosis. Am J Physiol Cell Physiol. 2022;323(2):C617–29. https://doi.org/10.1152/ajpcell.00218.2022.

Article  CAS  PubMed  Google Scholar 

He X, Zeng H, Chen JX. Emerging role of SIRT3 in endothelial metabolism, angiogenesis, and cardiovascular disease. J Cell Physiol. 2019;234(3):2252–65. https://doi.org/10.1002/jcp.27200.

Article  CAS  PubMed  Google Scholar 

Li X, Sun X, Carmeliet P. Hallmarks of endothelial cell metabolism in health and disease. Cell Metab. 2019;30(3):414–33. https://doi.org/10.1016/j.cmet.2019.08.011.

Article  CAS  PubMed  Google Scholar 

Kierans SJ, Taylor CT. Regulation of glycolysis by the hypoxia-inducible factor (HIF): implications for cellular physiology. J Physiol. 2021;599(1):23–37. https://doi.org/10.1113/JP280572.

Article  CAS  PubMed  Google Scholar 

Tirpe AA, Gulei D, Ciortea SM, Crivii C, Berindan-Neagoe I. Hypoxia: overview on hypoxia-mediated mechanisms with a focus on the role of HIF genes. Int J Mol Sci. 2019;20(24):6140. https://doi.org/10.3390/ijms20246140.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sirover MA. Pleiotropic effects of moonlighting glyceraldehyde-3-phosphate dehydrogenase (GAPDH) in cancer progression, invasiveness, and metastases. Cancer Metastasis Rev. 2018;37(4):665–76. https://doi.org/10.1007/s10555-018-9764-7.

Article  CAS  PubMed  Google Scholar 

Chiche J, Ricci JE, Pouysségur J. Tumor hypoxia and metabolism – towards novel anticancer approaches. Ann Endocrinol. 2013;74(2):111–4. https://doi.org/10.1016/j.ando.2013.02.004.

Article  CAS  Google Scholar 

Zahra K, Dey T, Ashish MSP, Pandey U. Pyruvate kinase M2 and cancer: the role of PKM2 in promoting tumorigenesis. Front Oncol. 2020;10:159. https://doi.org/10.3389/fonc.2020.00159.

Article  PubMed  PubMed Central  Google Scholar 

İlhan M. Non-metabolic functions of pyruvate kinase M2: PKM2 in tumorigenesis and therapy resistance. Neoplasma. 2022;69(4):747–54. https://doi.org/10.4149/neo_2022_220119N77.

Article  PubMed  Google Scholar 

Movahed ZG, Yarani R, Mohammadi P, Mansouri K. Sustained oxidative stress instigates differentiation of cancer stem cells into tumor endothelial cells: pentose phosphate pathway, reactive oxygen species and autophagy crosstalk. Biomed Pharmacother. 2021;139:111643. https://doi.org/10.1016/j.biopha.2021.111643.

Article  CAS  PubMed  Google Scholar 

TeSlaa T, Ralser M, Fan J, Rabinowitz JD. The pentose phosphate pathway in health and disease. Nat Metab. 2023;5(8):1275–89. https://doi.org/10.1038/s42255-023-00863-2.

Article  CAS  PubMed  Google Scholar 

Ge T, Yang J, Zhou S, Wang Y, Li Y, Tong X. The role of the pentose phosphate pathway in diabetes and cancer. Front Endocrinol. 2020;11:365. https://doi.org/10.3389/fendo.2020.00365.

Article 

留言 (0)

沒有登入
gif