Mzb1 Attenuates Atherosclerotic Plaque Vulnerability in ApoE-/- Mice by Alleviating Apoptosis and Modulating Mitochondrial Function

Kolodgie FD, et al. The thin-cap fibroatheroma: a type of vulnerable plaque - The major precursor lesion to acute coronary syndromes. Curr Opin Cardiol. 2001;16(5):285–92.

Article  CAS  PubMed  Google Scholar 

Finn AV, et al. Concept of Vulnerable/Unstable Plaque. Arterioscler Thromb Vasc Biol. 2010;30(7):1282–92.

Article  CAS  PubMed  Google Scholar 

Bentzon JF, et al. Mechanisms of Plaque Formation and Rupture. Circ Res. 2014;114(12):1852–66.

Article  CAS  PubMed  Google Scholar 

Sukhovershin RA, et al. Local Inhibition of Macrophage and Smooth Muscle Cell Proliferation to Suppress Plaque Progression. Methodist Debakey Cardiovasc J. 2016;12(3):141–5.

Article  PubMed  PubMed Central  Google Scholar 

Basatemur GL, et al. Vascular smooth muscle cells in atherosclerosis. Nat Rev Cardiol. 2019;16(12):727–44.

Article  PubMed  Google Scholar 

Grootaert MOJ, Bennett MR. Vascular smooth muscle cells in atherosclerosis: time for a re-assessment. Cardiovasc Res. 2021;117(11):2326–39.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Forte M, et al. The role of mitochondrial dynamics in cardiovascular diseases. Br J Pharmacol. 2021;178(10):2060–76.

Article  CAS  PubMed  Google Scholar 

Zhou B, Tian R. Mitochondrial dysfunction in pathophysiology of heart failure. J Clin Investig. 2018;128(9):3716–26.

Article  PubMed  PubMed Central  Google Scholar 

Iglewski M, et al. Mitochondrial Fission and Autophagy in the Normal and Diseased Heart. Curr Hypertens Rep. 2010;12(6):418–25.

Article  PubMed  PubMed Central  Google Scholar 

Lee CF, et al. Normalization of NAD+ redox balance as a therapy for heart failure. Circulation. 2016;134(12):883–94.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tsai K-L et al. Chlorogenic acid protects against oxldl-induced oxidative damage and mitochondrial dysfunction by modulating sirt1 in endothelial cells. Mol Nutr Food Res. 2018;62(11):e1700928.

Salnikova D et al. Mitochondrial dysfunction in vascular wall cells and its role in atherosclerosis. Int J Mol Sci. 2021;22(16):8990.

Suarez-Rivero JM et al. From mitochondria to atherosclerosis: the inflammation path. Biomedicines. 2021;9(3):258.

Madamanchi NR, Runge MS. Mitochondrial dysfunction in atherosclerosis. Circ Res. 2007;100(4):460–73.

Article  CAS  PubMed  Google Scholar 

Huang Y et al. MZB1-expressing cells are essential for local immunoglobulin production in chronic rhinosinusitis with nasal polyps. Annals of allergy, asthma & immunology: official publication of the American College of Allergy, Asthma, & Immunology. 2023. https://doi.org/10.1016/j.anai.2023.10.008. Online ahead of print.

Andreani V, et al. Cochaperone Mzb1 is a key effector of Blimp1 in plasma cell differentiation and β1-integrin function. Proc Natl Acad Sci USA. 2018;115(41):E9630–9.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li D, et al. MZB1 targeted by miR-185-5p inhibits the migration of human periodontal ligament cells through NF-κB signaling and promotes alveolar bone loss. J Periodontal Res. 2022;57(4):811–23.

Article  CAS  PubMed  Google Scholar 

Miyagawa-Hayashino A et al. Increase of MZB1 in B cells in systemic lupus erythematosus: proteomic analysis of biopsied lymph nodes. Arthritis Res Ther. 2018;20(1):13.

Watanabe M et al. MZB1 expression indicates poor prognosis in estrogen receptor-positive breast cancer. Oncol Lett. 2020;20(5):198.

Wu W et al. COL1A1 and MZB1 as the hub genes influenced the proliferation, invasion, migration and apoptosis of rectum adenocarcinoma cells by weighted correlation network analysis. Bioorg Chem. 2020;95:103457.

Zhang L, et al. Mzb1 protects against myocardial infarction injury in mice via modulating mitochondrial function and alleviating inflammation. Acta Pharmacol Sin. 2021;42(5):691–700.

Article  CAS  PubMed  Google Scholar 

Zhou H, et al. Pathogenesis of cardiac ischemia reperfusion injury is associated with CK2α-disturbed mitochondrial homeostasis via suppression of FUNDC1-related mitophagy. Cell Death Differ. 2018;25(6):1080–93.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bennett MR, Sinha S, Owens GK. Vascular Smooth Muscle Cells in Atherosclerosis. Circ Res. 2016;118(4):692–702.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Grootaert MOJ, et al. Vascular smooth muscle cell death, autophagy and senescence in atherosclerosis. Cardiovasc Res. 2018;114(4):622–34.

Article  CAS  PubMed  Google Scholar 

Shioi A, Ikari Y. Plaque Calcification During Atherosclerosis Progression and Regression. J Atheroscler Thromb. 2018;25(4):294–303.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ding Z, et al. Regulation of autophagy and apoptosis in response to ox-LDL in vascular smooth muscle cells, and the modulatory effects of the microRNA hsa-let-7g. Int J Cardiol. 2013;168(2):1378–85.

Article  PubMed  Google Scholar 

Flach H, et al. Mzb1 Protein Regulates Calcium Homeostasis, Antibody Secretion, and Integrin Activation in Innate-like B Cells. Immunity. 2010;33(5):723–35.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rosenbaum M, et al. MZB1 is a GRP94 cochaperone that enables proper immunoglobulin heavy chain biosynthesis upon ER stress. Genes Dev. 2014;28(11):1165–78.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liu M-Q, Chen Z, Chen L-X. Endoplasmic reticulum stress: a novel mechanism and therapeutic target for cardiovascular diseases. Acta Pharmacol Sin. 2016;37(4):425–43.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hotamisligil GS. Endoplasmic reticulum stress and atherosclerosis. Nat Med. 2010;16(4):396–9.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ron D, Walter P. Signal integration in the endoplasmic reticulum unfolded protein response. Nat Rev Mol Cell Biol. 2007;8(7):519–29.

Article  CAS  PubMed  Google Scholar 

Tabas I. The role of endoplasmic reticulum stress in the progression of atherosclerosis. Circ Res. 2010;107(7):839–50.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Myoishi M, et al. Increased endoplasmic reticulum stress in atherosclerotic plaques associated with acute coronary syndrome. Circulation. 2007;116(11):1226–33.

Article  PubMed  Google Scholar 

Margittai E, Sitia R. Oxidative protein folding in the secretory pathway and redox signaling across compartments and cells. Traffic. 2011;12(1):1–8.

Article  CAS  PubMed  Google Scholar 

Mabile L, et al. Mitochondrial function is involved in LDL oxidation mediated by human cultured endothelial cells. Arterioscler Thromb Vasc Biol. 1997;17(8):1575–82.

Article  CAS  PubMed  Google Scholar 

Peng W, et al. Mitochondrial dysfunction in atherosclerosis. DNA Cell Biol. 2019;38(7):597–606.

Article  CAS  PubMed  Google Scholar 

Walter L, Hajnóczky G. Mitochondria and endoplasmic reticulum: The lethal interorganelle cross-talk. J Bioenerg Biomembr. 2005;37(3):191–206.

Article  CAS  PubMed  Google Scholar 

Yu EPK, Bennett MR. The role of mitochondrial DNA damage in the development of atherosclerosis. Free Radical Biol Med. 2016;100:223–30.

Article  CAS  Google Scholar 

Yu EPK, et al. Mitochondrial respiration is reduced in atherosclerosis, promoting necrotic core formation and reducing relative fibrous cap thickness. Arterioscler Thromb Vasc Biol. 2017;37(12):2322–32.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ciccarelli G et al. Mitochondrial dysfunction: the hidden player in the pathogenesis of atherosclerosis?. Int J Mol Sci. 2023;24(2):1086.

Yu S, et al. PACS2 is required for ox-LDL-induced endothelial cell apoptosis by regulating mitochondria-associated ER membrane formation and mitochondrial Ca2+ elevation. Exp Cell Res. 2019;379(2):191–202.

Article  CAS  PubMed  Google Scholar 

Yu E, et al. Mitochondrial DNA damage can promote atherosclerosis independently of reactive oxygen species through effects on smooth muscle cells and monocytes and correlates with higher-risk plaques in humans. Circulation. 2013;128(7):702–12.

Article  CAS  PubMed  Google Scholar 

Rohwedder I, et al. Plasma fibronectin deficiency impedes atherosclerosis progression and fibrous cap formation. EMBO Mol Med. 2012;4(7):564–76.

Article  CAS  PubMed  PubMed Central  G

留言 (0)

沒有登入
gif