Numerical investigation of supercontinuum generation and optical frequency combs in SiN-based PCF with high nonlinear coefficient

JUN Q, SHU H W, CHANG L, et al. On-chip high-efficiency wavelength multicasting of PAM3/PAM4 signals using low-loss AlGaAs-on-insulator nanowaveguides[J]. Optics letters, 2020, 45(16): 4539–4542.

Article  ADS  Google Scholar 

WILLNER A E, FALLAHPOUR A, ALISHAHI F, et al. All-optical signal processing techniques for flexible networks[J]. Journal of lightwave technology, 2019, 37(1): 21–35.

Article  ADS  Google Scholar 

DUDLEY J M, GENTY G, COEN S. Supercontinuum generation in photonic crystal fiber[J]. Reviews of modern physics, 2006, 78(4): 1135–1184.

Article  ADS  Google Scholar 

BORGOHAIN N, SHARMA M, KONAR S. Broadband supercontinuum generation in photonic crystal fibers using cosh-Gaussian pulses at 835 nm wavelength[J]. Optik, 2016, 127(4): 1630–1634.

Article  ADS  Google Scholar 

DAI S X, WANG Y Y, PENG X F. Review of mid-infrared supercontinuum generation in chalcogenide glass fibers[J]. Applied science, 2018, 8(5): 707.

Article  Google Scholar 

SAFIOUI J. Supercontinuum generation in hydrogenated amorphous silicon waveguides at telecommunication wavelengths[J]. Optic express, 2014, 22: 3089–3097.

Article  ADS  Google Scholar 

LUO B H, WANG Y Y, DAI S X, et al. Midinfrared supercontinuum generation in As2Se3-As2S3 chalcogenide glass fiber with high NA[J]. Journal of light-wave technology, 2017, 35(12): 2464–2469.

Article  ADS  Google Scholar 

SEIFOURI M, OLYAEE S, KARAMI R. A new design of As2Se3 chalcogenide nanostructured photonic crystal fiber for the purpose of supercontinuum generation[J]. Current nanoscience, 2017, 13(2): 202–207.

Article  ADS  Google Scholar 

GHANBARI A, OLYAEE S. Highly nonlinear composite-photonic crystal fibers with simplified manufacturing process and efficient MID-IR applications[J]. Crystals, 2023, 13(2): 1–17.

Article  Google Scholar 

GHANBARI A, OLYAEE S. A computational method for simple design of endlessly all-silica large mode area photonic crystal fiber for high power laser applications[J]. Journal of computational electronics, 2023, 22(2): 704–715.

Article  Google Scholar 

CHESHMBERAH A, SEIFOURI M, OLYAEE S. Design of all-normal dispersion with Ge11.5As24Se64.5/Ge20Sb15Se65 chalcogenide PCF pumped at 1300 nm for supercontinuum generation[J]. Optical and quantum electronics, 2021, 53(8): 1–11.

Article  Google Scholar 

CHESHMBERAH A, SEIFOURI M, OLYAEE S. Supercontinuum generation in PCF with As2S3/Ge20Sb15Se65 chalcogenide core pumped at second telecommunication wavelengths for WDM[J]. Optical and quantum electronics, 2020, 52(12): 1–14.

Article  Google Scholar 

HU H, OXENLØWE L K. Chip-based optical frequency combs for high-capacity optical communications[J]. Nanophotonics, 2021, 10(5): 1367–1385.

Article  Google Scholar 

BOUCON A, SYLVESTRE T, HUY K P, et al. Supercontinuum generation by nanosecond dual-pumping near the two zero-dispersion wavelengths of a photonic crystal fiber[J]. Optics communications, 2011, 284(1): 467–470.

Article  ADS  Google Scholar 

MONFARED Y E, PONOMARENKO S A. Extremely nonlinear carbon-disulfide-filled photonic crystal fiber with controllable dispersion[J]. Optical materials, 2019, 88: 406–411.

Article  ADS  Google Scholar 

YI D, WU C, LIU Y, et al. Dual-pumped flat optical frequency comb based on normal dispersion AlGaAs on insulator waveguide: numerical investigation[J]. Optics communications, 2022, 502: 127415.

Article  Google Scholar 

CHILES J, NADER N, STANTON E J, et al. Multifunctional integrated photonics in the mid-infrared with suspended AlGaAs on silicon[J]. Optica, 2019, 6(9): 1246–1254.

Article  ADS  Google Scholar 

ALIZADEH M R, SEIFOURI M. Investigation of highly broadb and supercontinuum generation in a suspended As2Se3 based ridge waveguide[J]. Journal of optoelectronical nanostructures, 2020, 5(4): 1–16.

Google Scholar 

XIAO L M, JIN W, DEMOKAN M S, et al. Photopolymer microtips for efficient light coupling between single-mode fibers and photonic crystal fibers[J]. Optics letters, 2006, 31: 1791–1793.

Article  ADS  Google Scholar 

MBAYE D, AMINE B S, RIM C, et al. Super-flat coherent supercontinuum source in As38.8Se61.2 chalcogenide photonic crystal fiber with allnormal dispersion engineering at a very low input energy[J]. Applied optics, 2017, 56: 163–169.

Article  Google Scholar 

HAMED S, VIEN V. Broadband mid-infrared supercontinuum generation in dispersion-engineered silicon-on-insulator waveguide[J]. Journal of the optical society of America B, 2019, 36: A193–A202.

Article  Google Scholar 

CHRISTIAN A, CHRISTIAN P, SUNE D, et al. Supercontinuum generation in ZBLAN fibers-detailed comparison between measurement and simulation[J]. Journal of the optical society of America B, 2012, 29: 635–645.

Article  Google Scholar 

HAMED S, MAJID E H, MOHAMMAD K M F. Midinfrared supercontinuum generation via As2Se3 chalcogenide photonic crystal fibers[J]. Applied optics, 2015, 54: 2072–2079.

Article  Google Scholar 

GUO Y C, YUAN J H, WANG K R, et al. Generation of supercontinuum and frequency comb in a nitrobenzene-core photonic crystal fiber with all-normal dispersion profile[J]. Optics communications, 2021, 481(4): 126555.

Article  Google Scholar 

TARNOWSKI K, TADEUSZ M, PAWEL M, et al. Compact all-fiber source of coherent linearly polarized octaves panning supercontinuum based on normal dispersion silica fiber[J]. Scientific reports, 2019, 9: 12313.

Article  ADS  Google Scholar 

IRNIS K, CHRISTIAN S A, PETER M M, et al. Midinfrared supercontinuum generation to 4.5 µm in uniform and tapered ZBLAN step-index fibers by direct pumping at 1064 or 1550 nm[J]. Journal of the optical society of America B, 2013, 30: 2743–2757.

Google Scholar 

SAGHAEI H, MORAVVEJ-FARSHI M K, EBNALIHEIDARI M, et al. Ultra-wide mid-infrared supercontinuum generation in As40Se60 chalcogenide fibers: solid core PCF versus SIF[J]. IEEE journal of selected topics in quantum electronics, 2016, 22(2): 279–286.

Article  ADS  Google Scholar 

NAUTA J, OELMANN J H, BORODIN A, et al. XUV frequency comb production with an astigmatism-compensated enhancement cavity[J]. Optics express, 2021, 29(2): 2624–2636.

Article  ADS  Google Scholar 

XIE Y Z, LI J Q, ZHANG Y F, et al. Soliton frequency comb generation in CMOS-compatible silicon nitride microresonators[J]. Photonics research, 2022, 10: 1290–1296.

Article  Google Scholar 

HE X T, LIANG E T, YUAN J J, et al. A silicon-on-insulator slab for topological valley transport[J]. Nature communications, 2019, 10: 872.

Article  ADS  Google Scholar 

留言 (0)

沒有登入
gif