Long Story Short: Establishing Breakpoints for Antimicrobials and 2023 Updates

Wenzler E, Maximos M, Asempa TE, Biehle L, Schuetz AN, Hirsch EB. Antimicrobial susceptibility testing: an updated primer for clinicians in the era of antimicrobial resistance: insights from the Society of Infectious Diseases Pharmacists. Pharmacother J Hum Pharmacol Drug Ther. 2023;43(4):264–78.

Article  Google Scholar 

United States Food and Drug Administration. Antibacterial susceptibility test interpretive criteria. 2023. Available from: https://www.fda.gov/drugs/development-resources/antibacterial-susceptibility-test-interpretive-criteria.

Humphries RM, Ferraro MJ, Hindler JA. Impact of 21st century cures act on breakpoints and commercial antimicrobial susceptibility test systems: progress and pitfalls. J Clin Microbiol. 2018;56(5):e00139-e218.

Article  PubMed  PubMed Central  Google Scholar 

Clinical and Laboratory Standards Institute. Performance standards for antimicrobial susceptibility testing, 33rd ed. CLSI supplement M100. Clinical and Laboratory Standards Institute. 2023. Wayne, PA.

Clinical and Laboratory Standards Institute. Development of in vitro susceptibility testing criteria and quality control parameters. 6th ed. CLSI guidelines M23. Clinical and Laboratory Standards Institute. 2023. Wayne, PA.

Kahlmeter G, Turnidge J. How to: ECOFFs-the why, the how, and the don’ts of EUCAST epidemiological cutoff values. Clin Microbiol Infect Off Publ Eur Soc Clin Microbiol Infect Dis. 2022;28(7):952–4.

Google Scholar 

Turnidge J, Kahlmeter G, Kronvall G. Statistical characterisation of bacterial wild-type MIC value distributions and the determination of epidemiological cut-off values. Clin Microbiol Infect. 2006;12(5):418–25.

Article  CAS  PubMed  Google Scholar 

Chua HC, Tam VH. Optimizing clinical outcomes through rational dosing strategies: roles of pharmacokinetic/pharmacodynamic modeling tools. Open Forum Infect Dis. 2022 Dec;9(12):ofac626.

Brooke JS. Stenotrophomonas maltophilia: an emerging global opportunistic pathogen. Clin Microbiol Rev. 2012;25(1):2–41.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Calza L, Manfredi R, Chiodo F. Stenotrophomonas (Xanthomonas) maltophilia as an emerging opportunistic pathogen in association with HIV infection: a 10-year surveillance study. Infection. 2003;31(3):155–61.

Article  CAS  PubMed  Google Scholar 

Lai CH, Chi CY, Chen HP, Chen TL, Lai CJ, Fung CP, et al. Clinical characteristics and prognostic factors of patients with Stenotrophomonas maltophilia bacteremia. J Microbiol Immunol Infect Wei Mian Yu Gan Ran Za Zhi. 2004;37(6):350–8.

PubMed  Google Scholar 

Metan G, Hayran M, Hascelik G, Uzun O. Which patient is a candidate for empirical therapy against Stenotrophomonas maltophilia bacteraemia? An analysis of associated risk factors in a tertiary care hospital. Scand J Infect Dis. 2006;38(6–7):527–31.

Article  PubMed  Google Scholar 

Garrison MW, Anderson DE, Campbell DM, Carroll KC, Malone CL, Anderson JD, et al. Stenotrophomonas maltophilia: emergence of multidrug-resistant strains during therapy and in an in vitro pharmacodynamic chamber model. Antimicrob Agents Chemother. 1996;40(12):2859–64.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zelenitsky SA, Iacovides H, Ariano RE, Harding GKM. Antibiotic combinations significantly more active than monotherapy in an in vitro infection model of Stenotrophomonas maltophilia. Diagn Microbiol Infect Dis. 2005;51(1):39–43.

Article  CAS  PubMed  Google Scholar 

Chen IH, Kidd JM, Abdelraouf K, Nicolau DP. Comparative in vivo antibacterial activity of human-simulated exposures of cefiderocol and ceftazidime against Stenotrophomonas maltophilia in the murine thigh model. Antimicrob Agents Chemother. 2019;63(12):e01558–19, AAC.01558–19.

IHMA International Health Management Associates. 2023. Available from: https://www.ihma.com/.

JMI Laboratories. 2023. Available from: https://www.jmilabs.com/.

Khan A, Arias CA, Abbott A, Dien Bard J, Bhatti MM, Humphries RM. Evaluation of the Vitek 2, Phoenix, and MicroScan for antimicrobial susceptibility testing of Stenotrophomonas maltophilia. J Clin Microbiol. 2021;59(9): e0065421.

Article  PubMed  Google Scholar 

Mojica MF, Rutter JD, Taracila M, Abriata LA, Fouts DE, Papp-Wallace KM, et al. Population structure, molecular epidemiology, and β-lactamase diversity among Stenotrophomonas maltophilia isolates in the United States. mBio. 2019;10(4):e00405–19.

Sader HS, Duncan LR, Arends SJR, Carvalhaes CG, Castanheira M. Antimicrobial activity of aztreonam-avibactam and comparator agents when tested against a large collection of contemporary Stenotrophomonas maltophilia isolates from medical centers worldwide. Antimicrob Agents Chemother. 2020;64(11):e01433-e1520.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Nakamura R, Oota M, Matsumoto S, Sato T, Yamano Y. In vitro activity and in vivo efficacy of cefiderocol against Stenotrophomonas maltophilia. Antimicrob Agents Chemother. 2021;65(4):e01436-e1520.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Petraitis V, Petraitiene R, Kavaliauskas P, Naing E, Garcia A, Georgiades BN, et al. Efficacy of cefiderocol in experimental Stenotrophomonas maltophilia pneumonia in persistently neutropenic rabbits. Antimicrob Agents Chemother. 2022;66(10): e0061822.

Article  PubMed  Google Scholar 

Biagi M, Vialichka A, Jurkovic M, Wu T, Shajee A, Lee M, et al. Activity of cefiderocol alone and in combination with levofloxacin, minocycline, polymyxin B, or trimethoprim-sulfamethoxazole against multidrug-resistant Stenotrophomonas maltophilia. Antimicrob Agents Chemother. 2020;64(9):e00559-e620.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lasko MJ, Gethers ML, Tabor-Rennie JL, Nicolau DP, Kuti JL. In vitro time-kill studies of trimethoprim/sulfamethoxazole against Stenotrophomonas maltophilia versus Escherichia coli using cation-adjusted Mueller-Hinton broth and ISO-sensitest broth. Antimicrob Agents Chemother. 2022;66(3): e0216721.

Article  PubMed  Google Scholar 

Nys C, Cherabuddi K, Venugopalan V, Klinker KP. Clinical and microbiologic outcomes in patients with monomicrobial Stenotrophomonas maltophilia infections. Antimicrob Agents Chemother. 2019;63(11):e00788-e819.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Junco SJ, Bowman MC, Turner RB. Clinical outcomes of Stenotrophomonas maltophilia infection treated with trimethoprim/sulfamethoxazole, minocycline, or fluoroquinolone monotherapy. Int J Antimicrob Agents. 2021;58(2): 106367.

Article  CAS  PubMed  Google Scholar 

Tamma PD, Aitken SL, Bonomo RA, Mathers AJ, van Duin D, Clancy CJ. Infectious Diseases Society of America 2023 guidance on the treatment of antimicrobial resistant gram-negative infections. Clin Infect Dis. 2023;ciad428.

Fratoni AJ, Nicolau DP, Kuti JL. Minocycline pharmacodynamics against Stenotrophomonas maltophilia in the neutropenic murine infection model: implications for susceptibility breakpoints. J Antimicrob Chemother. 2022;77(4):1052–60.

Article  CAS  PubMed  Google Scholar 

Wei C, Ni W, Cai X, Cui J. A Monte Carlo pharmacokinetic/pharmacodynamic simulation to evaluate the efficacy of minocycline, tigecycline, moxifloxacin, and levofloxacin in the treatment of hospital-acquired pneumonia caused by Stenotrophomonas maltophilia. Infect Dis Lond Engl. 2015;47(12):846–51.

Article  CAS  Google Scholar 

Tokatly Latzer I, Nahum E, Cavari Y, Lazar I, Ben-Ari Y, Ben-Shimol S, et al. Treatment outcomes of Stenotrophomonas maltophilia bacteremia in critically ill children: a multicenter experience. Pediatr Crit Care Med J Soc Crit Care Med World Fed Pediatr Intensive Crit Care Soc. 2019;20(5):e231–9.

Google Scholar 

Hand E, Davis H, Kim T, Duhon B. Monotherapy with minocycline or trimethoprim/sulfamethoxazole for treatment of Stenotrophomonas maltophilia infections. J Antimicrob Chemother. 2016;71(4):1071–5.

Article  CAS  PubMed  Google Scholar 

Jacobson S, Noa LJ, Wallace MR, Bowman MC. Clinical outcomes using minocycline for Stenotrophomonas maltophilia infections. J Antimicrob Chemother. 2016;71(12):3620.

Article  CAS  PubMed  Google Scholar 

Imoto W, Kaneko Y, Yamada K, Kuwabara G, Yamairi K, Shibata W, et al. A mouse model of rapidly progressive fatal haemorrhagic pneumonia caused by Stenotrophomonas maltophilia. J Glob Antimicrob Resist. 2020;1(23):450–5.

Article  Google Scholar 

Yuan Z, Ledesma KR, Singh R, Hou J, Prince RA, Tam VH. Quantitative assessment of combination antimicrobial therapy against multidrug-resistant bacteria in a murine pneumonia model. J Infect Dis. 2010;201(6):889–97.

Article  CAS  PubMed  Google Scholar 

The European Committee on Antimicrobial Susceptibility Testing. Breakpoint tables for interpretation of MICs and zone diameters. Version 12.0, 2022. http://www.eucast.org.

Foong KS, Carlson AL, Munigala S, Burnham CAD, Warren DK. Clinical impact of revised cefepime breakpoint in patients with Enterobacteriaceae bacteremia. Open Forum Infect Dis. 2019;6(8):ofz341.

Kunz Coyne AJ, El Ghali A, Lucas K, Witucki P, Rebold N, Holger DJ, et al. High-dose cefepime vs carbapenems for bacteremia caused by Enterobacterales with moderate to high risk of clinically significant AmpC β-lactamase production. Open Forum Infect Dis. 2023;10(3):ofad034.

Bonnin RA, Bernabeu S, Emeraud C, Creton E, Vanparis O, Naas T, et al. Susceptibility of OXA-48-producing Enterobacterales to imipenem/relebactam, meropenem/vaborbactam and ceftazidime/avibactam. Int J Antimicrob Agents. 2022;60(4): 106660.

Article  CAS  PubMed  Google Scholar 

Kazmierczak KM, Bradford PA, Stone GG, de Jonge BLM, Sahm DF. In vitro activity of ceftazidime-avibactam and aztreonam-avibactam against OXA-48-carrying Enterobacteriaceae isolated as part of the international network for optimal resistance monitoring (INFORM) global surveillance program from 2012 to 2015. Antimicrob Agents Chemother. 2018;62(12):e00592-e618.

Article  PubMed  PubMed Central  Google Scholar 

Xacduro Package Insert. 2023. Accessed Aug 10, 2023. https://xacduro-assets.s3.amazonaws.com/prescribing-information.pdf.

FDA. May 23, 2023. Accessed Aug 10, 2023. https://www.fda.gov/news-events/press-announcements/fda-approves-new-treatment-pneumonia-caused-certain-difficult-treat-bacteria.

Kaye KS, Shorr AF, Wunderink RG, Du B, Poirier GE, Rana K, et al. Efficacy and safety of sulbactam-durlobactam versus colistin for the treatment of patients with serious infections caused by Acinetobacter baumannii-calcoaceticus complex: a multicentre, randomised, active-controlled, phase 3, non-inferiority clinical trial (ATTACK). Lancet Infect Dis. 2023;S1473–3099(23):00184–6.

Google Scholar 

Karlowsky JA, Hackel MA, McLeod SM, Miller AA. <i>In vitro<i> activity of sulbactam-durlobactam against global isolates of Acinetobacter baumannii-calcoaceticus complex collected from 2016 to 2021. Antimicrob Agents Chemother. 2022;66(9): e0078122.

Article  PubMed  Google Scholar 

Simner PJ, Hindler JA, Bhowmick T, Das S, Johnson JK, Lubers BV, et al. What’s new in antibiograms? Updating CLSI M39 guidance with current trends. J Clin Microbiol. 2022;60(10):e02210-e2221.

Article  PubMed  PubMed Central  Google Scholar 

Pollack LA, Srinivasan A. Core elements of hospital antibiotic stewardship programs from the Centers for Disease Control and Prevention. Clin Infect Dis. 2014;59(suppl_3):S97–1.

Tallman GB, Vilches-Tran RA, Elman MR, Bearden DT, Taylor JE, Gorman PN, et al. Empiric antibiotic prescribing decisions among medical residents: the role of the antibiogram. Infect Control Hosp Epidemiol. 2018;39(5):578–83.

Article  PubMed  Google Scholar 

Barlam TF, Cosgrove SE, Abbo LM, MacDougall C, Schuetz AN, Septimus EJ, et al. Implementing an antibiotic stewardship program: guidelines by the Infectious Diseases society of america and the society for healthcare epidemiology of America. Clin Infect Dis Off Publ Infect Dis Soc Am. 2016;62(10):e51-77.

Article  Google Scholar 

Truong WR, Hidayat L, Bolaris MA, Nguyen L, Yamaki J. The antibiogram: key considerations for its development and utilization. JAC-Antimicrob Resist. 2021;3(2):dlab060.

留言 (0)

沒有登入
gif