Advantages of an Additional Raman Channel in Laser Sounding at Wavelengths of 355–1064 nm for Retrieving Microphysical Parameters of Atmospheric Aerosol

B. N. Holben, T. F. Eck, I. Slutsker, D. Tanre, J. P. Buis, A. Setzer, E. Vermote, J. A. Reagan, Y. Kaufman, T. Nakajima, F. Lavenu, I. Jankowiak, and A. Smirnov, “AERONET—a federated instrument network and data archive for aerosol characterization,” Rem. Sens. Environ 66, 1–16 (1998).

Article  ADS  Google Scholar 

O. Dubovik and M. D. King, “A flexible inversion algorithm for retrieval of aerosol optical properties from Sun and sky radiance measurements,” J. Geophys. Res. 105, 20673–20696 (2000).

Article  ADS  Google Scholar 

O. Dubovik, A. Sinyuk, T. Lapyonok, B. N. Holben, M. Mishchenko, P. Yang, T. F. Eck, H. Volten, O. Munoz, B. Veihelmann, W. J. van der Zande, J.-F. Leon, M. Sorikin, and I. Slutsker, “Application of spheroid moments to account for aerosol particle nonsphericity in remote sensing of desert dust,” J. Geophys. Res. 111, D11208 (2006).

ADS  Google Scholar 

O. Dubovik, Z. Li, M. I. Mishchenko, D. Tanre, Y. Karol, B. Bojkov, B. Cairns, D. J. Diner, W. R. Espinosa, P. Goloub, X. Gu, O. Hasekamp, J. Hong, W. Hou, K. D. Knobelspiesse, J. Landgraf, L. Li, P. Litvinov, Y. Liu, A. Lopatin, T. Marbach, H. Maring, V. Martins, Y. Meijer, G. Milinevsky, S. Mukai, F. Parol, Y. Qiao, L. Remer, J. Rietjens, I. Sano, P. Stammes, S. Stamnes, X. Sun, P. Tabary, L. D. Travis, F. Waquet, F. Xu, C. Yan, and D. Yin, “Polarimetric remote sensing of atmospheric aerosols: Instruments, methodologies, results, and perspectives,” J. Quant. Spectrosc. Radiat. Transfer 224, 474–511 (2019).

Article  ADS  Google Scholar 

W. R. Espinosa, J. V. Martins, L. A. Remer, O. Dubovik, T. Lapyonok, D. Fuertes, A. Puthukkudy, D. Orozco, L. Ziemba, K. L. Thornhill, and R. Levy, “Retrievals of aerosol size distribution, spherical fraction, and complex refractive index from airborne in situ angular light scattering and absorption measurements,” J. Geophys. Res. Atmos. 124, 7997–8024 (2019).

Article  ADS  Google Scholar 

L. Li, O. Dubovik, Y. Derimian, G. L. Schuster, T. Lapyonok, P. Litvinov, F. Ducos, D. Fuertes, C. Chen, Z. Li, A. Lopatin, B. Torres, and H. Che, “Retrievals of fine mode light-absorbing carbonaceous aerosols from POLDER/PARASOL observations over East and South Asia,” Remote Sens. Environ. 247, 111913 (2020).

Article  Google Scholar 

A. Lopatin, O. Dubovik, D. Fuertes, G. Stenchikov, T. Lapyonok, I. Veselovskii, F. G. Wienhold, I. Shevchenko, Q. Hu, and S. Parajuli, “Synergy processing of diverse ground-based remote sensing and in situ data using the GRASP algorithm: Applications to radiometer, lidar and radiosonde observations,” Atmos. Meas. Tech. 14, 2575–2614 (2021).

Article  Google Scholar 

J. Bösenberg, A. Ansmann, J. M. Baldasano, D. Balis, C. Böckmann, B. Calpini, A. Chaikovsky, P. Flamant, A. Hågård, V. Mitev, A. Papayannis, J. Pelon, D. Resendes, J. Schneider, N. Spinelli, T. Trickl, G. Vaughan, G. Visconti, and M. Wiegner, “EARLINET: A European Aerosol Research Lidar Network,” in Advances in Laser Remote Sensing, Ed. by A. Dabas, C. Loth, and J. Pelon (Editions de L’Ecole Polytechnique, 2000), pp. 155–158.

T. Murayama, N. Sugimoto, I. Uno, K. Kinoshita, K. Aoki, N. Hagiwara, Z. Liu, I. Matsui, T. Sakai, T. Shibata, K. Arao, B.-J. Sohn, J.-G. Won, S.-C. Yoon, T. Li, J. Zhou, H. Hu, M. Abo, K. Iokibe, R. Koga, and Y. Iwasaka, “Ground-based network observation of Asian dust events of April 1998 in East Asia,” J. Geophys. Res. 106, 18 345–18 359 (2001).

Article  ADS  Google Scholar 

E. J. Welton, J. R. Campbell, J. D. Spinhirne, and V. S. Scott, “Global monitoring of clouds and aerosols using a network of micro-pulse lidar systems,” Proc. SPIE—Int. Soc. Opt. Eng. 4153, 151–158 (2001).

A. P. Chaikovsky, A. P. Ivanov, Yu. S. Balin, A. V. Elnikov, G. F. Tulinov, I. I. Plusnin, O. A. Bukin, and B. B. Chen, “CIS-LINET—LIdar NETwork for monitoring aerosol and ozone in CIS regions,” Reviewed and Revised Papers Presented at the 23d ILRC, Ed. by C. Nagasava and N. Sugimoto (Nara, Japan, 2006), pp. 671–672.

U. Wandinger, V. Freudenthaler, H. Baars, A. Amodeo, R. Engelmann, I. Mattis, S. Groß, G. Pappalardo, A. Giunta, G. D’Amico, A. Chaikovsky, F. Osipenko, A. Slesar, D. Nicolae, L. Belegante, C. Talianu, I. Serikov, H. Linné, F. Jansen, A. Apituley, K. M. Wilson, M. De Graaf, T. Trickl, H. Giehl, M. Adam, A. Comerón, C. Muñoz-Porcar, F. Rocadenbosch, M. Sicard, S. Tomás, D. Lange, D. Kumar, M. Pujadas, F. Molero, A. J. Fernández, L. Alados-Arboledas, J. A. Bravo-Aranda, F. Navas-Guzmán, J. L. Guerrero-Rascado, M. Granados-Muñoz J., J. Preißler, F. Wagner, M. Gausa, I. Grigorov, D. Stoyanov, M. Iarlori, V. Rizi, N. Spinelli, A. Boselli, X. Wang, T. Lo Feudo, M. R. Perrone, F. De Tomasi, and P. Burlizzi, “EARLINET instrumentation campaigns: Overview on strategy and results,” Atmos. Meas. Tech. 9, 1001–1023 (2016).

Article  Google Scholar 

S. P. Burton, E. Chemyakin, X. Liu, K. Knobelspiesse, S. Stamnes, P. Sawamura, R. H. Moore, Ch. A. Hostetler, and R. A. Ferrare, “Information content and sensitivity of the (3β + 2σ) lidar measurement system for aerosol microphysical retrievals,” Atmos. Meas. Tech. 9, 5555–5574 (2016).

Article  Google Scholar 

M. Tesche, A. Kolgotin, M. Haarig, S. P. Burton, R. A. Ferrare, C. A. Hostetler, and D. Müller, “3 + 2 + X: What is the most useful depolarization input for retrieving microphysical properties of non-spherical particles from lidar measurements using the spheroid model of Dubovik et al. (2006)?,” Atmos. Meas. Tech. 12, 4421–4437 (2019).

Article  Google Scholar 

I. Veselovskii, D. N. Whiteman, M. Korenskiy, A. Suvorina, and D. Pérez-Ramírez, “Use of rotational Raman measurements in multiwavelength aerosol lidar for evaluation of particle backscattering and extinction,” Atmos. Meas. Tech. 8, 4111–4122 (2015).

Article  Google Scholar 

M. Haarig, R. Engelmann, A. Ansmann, I. Veselovskii, D. N. Whiteman, and D. Althausen, “1064 nm Raman lidar for extinction and lidar ratio profiling: cirrus case study,” Atmos. Meas. Tech. 9, 4269–4278 (2016).

Article  Google Scholar 

D. Müller, U. Wandinger, and A. Ansmann, “Microphysical particle parameters from extinction and backscatter lidar data by inversion with regularization: Theory,” Appl. Opt. 38, 2346–2357 (1999).

Article  ADS  Google Scholar 

C. Böckmann, “Hybrid regularization method for the ill-posed inversion of multiwavelength lidar data in the retrieval of aerosol size distribution,” Appl. Opt. 40, 1329–1342 (2001).

Article  ADS  Google Scholar 

I. Veselovskii, A. Kolgotin, V. Griaznov, D. Müller, K. Franke, and D. M. Whiteman, “Inversion of multiwavelength raman lidar data for retrieval of bimodal aerosol size distribution,” Appl. Opt. 43, 1180–1195 (2004).

Article  ADS  Google Scholar 

D. Müller, C. Böckmann, A. Kolgotin, L. Schneidenbach, E. Chemyakin, J. Rosemann, P. Znak, and A. Romanov, “Microphysical particle properties derived from inversion algorithm developed in the framework of EARLINET,” Atmos. Meas. Tech. 9, 5007–5035 (2016).

Article  Google Scholar 

P. Sawamura, R. H. Moore, S. P. Burton, E. Chemyakin, D. Müller, A. Kolgotin, R. A. Ferrare, Ch. A. Hostetler, L. D. Ziemba, A. J. Beyersdorf, and B. E. Anderson, “HSRL-2 aerosol optical measurements and microphysical retrievals vs. airborne in situ measurements during DISCOVER-AQ 2013: An intercomparison study,” Atmos. Chem. Phys. 17, 7229–7243 (2017).

Article  ADS  Google Scholar 

D. Müller, E. Chemyakin, A. Kolgotin, R. A. Ferrare, C. A. Hostetler, and A. Romanov, “Automated, unsupervised inversion of multiwavelength lidar data with TiARA: Assessment of retrieval performance of microphysical parameters using simulated data,” Appl. Opt. 58, 4981–5008 (2019).

Article  ADS  Google Scholar 

D. Pérez-Ramírez, D. N. Whiteman, I. Veselovskii, M. Korenskiy, P. Colarco, and A. Da Silva, “Optimized profile retrievals of aerosol microphysical properties from simulated spaceborne multiwavelength lidar,” J. Quant. Spectrosc. Radiat. Transfer 246, 106932 (2020).

Article  Google Scholar 

I. Veselovskii, Q. Hu, P. Goloub, T. Podvin, M. Korenskiy, Y. Derimian, M. Legrand, and P. Castellanos, “Variability in lidar-derived particle properties over West Africa due to changes in absorption: Towards an understanding,” Atmos. Chem. Phys. 20, 6563–6581 (2020).

Article  ADS  Google Scholar 

S. V. Samoilova, I. E. Penner, G. P. Kokhanenko, and Yu. S. Balin, “Simultaneous reconstruction of two microphysical aerosol characteristics from the lidar data,” J. Quant. Spectrosc. Radiat. Transfer 222-223, 35–44 (2019).

Article  ADS  Google Scholar 

S. V. Samoilova, I. E. Penner, and Yu. S. Balin, “Separate retrieval of microphysical characteristics in aerosol fraction,” J. Quant. Spectrosc. Radiat. Transfer 285, 108168 (2022).

Article  Google Scholar 

M. Haarig, A. Ansmann, H. Baars, C. Jimenez, I. Veselovskii, R. Engelmann, and D. Althausen, “Depolarization and lidar ratios at 355, 532, and 1064 nm and microphysical properties of aged tropospheric and stratospheric canadian wildfire smoke,” Atmos. Chem. Phys. 18, 11847–11861 (2018).

Article  ADS  Google Scholar 

W. G. K. McLean, G. Fu, S. P. Burton, and and O. P. Hasekamp, “Retrieval of aerosol microphysical properties from atmospheric lidar sounding: An investigation using synthetic measurements and data from the ACEPOL campaign,” Atmos. Meas. Tech. 14, 4755–4771 (2021).

Article  Google Scholar 

V. E. Zuev and I. E. Naats, Inverse Problems of Lidar Sensing of the Atmosphere (Springer, Berlin, 1983).

F. C. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (John Wiley & Sons Inc, New York, 1983).

Google Scholar 

V. F. Turchin, V. P. Kozlov, and M. S. Malkevich, “The use of mathematical-statistics methods in the solution of incorrectly posed problems,” Sov. Phys. Usp. 13, 681–703 (1971).

Article  ADS  Google Scholar 

G. I. Vasilenko, Theory of Signal Retrieving (Sov. radio, Moscow, 1979) [in Russian].

S. V. Samoilova, M. A. Sviridenkov, and I. E. Penner, “Retrieval of the particle size distribution function from the data of lidar sensing under the assumption of known refractive index,” Appl. Opt. 55, 8022–8029 (2016).

Article  ADS  Google Scholar 

S. V. Samoilova, “Simultaneous reconstruction of the complex refractive index and the particle size distribution function from lidar measurements: Testing the developed algorithms,” Atmos. Ocean. Opt. 32 (6), 628–642 (2019).

Article  Google Scholar 

A. N. Tikhonov and V. Ya. Arsenin, Solutions of Ill-Posed Problems (John Wiley & Sons, New York, 1977).

留言 (0)

沒有登入
gif