InGaN multiple quantum well based light-emitting diodes with indium composition gradient InGaN quantum barriers

KNEISSL M, SEONG T Y, HAN J, et al. The emergence and prospects of deep-ultraviolet light-emitting diode technologies Han[J]. Nature photonics, 2019, 13(4): 233–244.

Article  Google Scholar 

HINDS L M, O’DONNEL C P, AKHTE M, et al. Principles and mechanisms of ultraviolet light emitting diode technology for food industry applications[J]. Innovative food science & emerging technologies, 2019, 56: 102153.

Article  Google Scholar 

MURAMOTO Y, KIMUR M, NOUDA S. Development and future of ultraviolet light-emitting diodes: UV-LED will replace the UV lamp[J]. Semiconductor science and technology, 2014, 29(8): 084004.

Article  Google Scholar 

SONG K, MPHSENI M, TAGHIPOU F. Application of ultraviolet light-emitting diodes (UV-LEDs) for water disinfection: a review[J]. Water research, 2016, 94: 341–349.

Article  Google Scholar 

YU H B, REN Z J, MEMON M H, et al. Cascaded deep ultraviolet light-emitting diode via tunnel junction[J]. Chinese optics letters, 2021, 19(8): 082503.

Article  Google Scholar 

NAKAMURA S. Future technologies and applications of III-nitride materials and devices[J]. Engineering, 2015, 1(2): 161.

Article  Google Scholar 

ZHENG H, SUN H, YANG M, et al. Effect of polarization field and nonradiative recombination lifetime on the performance improvement of step stage InGaN/GaN multiple quantum well LEDs[J]. Journal of display technology, 2015, 11(9): 776–782.

Article  Google Scholar 

KUO Y K, CHANG J Y, TSAI M C, et al. Enhancement in hole-injection efficiency of blue InGaN light-emitting diodes from reduced polarization by some specific designs for the electron blocking layer[J]. Optics letters, 2010, 35(19): 3285–3287.

Article  Google Scholar 

XU J R, SCHUBERT M F, NOENAUN A N, et al. Reduction in efficiency droop, forward voltage, ideality factor, and wavelength shift in polarization-matched GaInN/GaInN multi-quantum-well light-emitting diodes[J]. Applied physics letters, 2009, 94(1): 011113.

Article  Google Scholar 

YEN S H, TSAI M C, TSAI M L, et al. Effect of n-type Algan layer on carrier transportation and efficiency drop of blue InGaN light-emitting diodes[J]. IEEE photonics technology letters, 2009, 21(14): 975–977.

Article  Google Scholar 

KUO Y K, CHANG J Y, TSAI M C, et al. Advantages of blue InGaN multiple-quantum well light-emitting diodes with InGaN barriers[J]. Applied physics letters, 2009, 95: 1011116.

Article  Google Scholar 

KUO Y K, WANG T H, CHANG J Y, et al. Advantages of InGaN light-emitting diodes with GaN-InGaN-GaN barriers[J]. Applied physics letters, 2011, 99(9): 091107.

Article  Google Scholar 

XIONG J Y, XU Y Q, DING B B, et al. Investigation of blue InGaN light-emitting diodes with p-AlGaN/InGaN superlattice interlayer[J]. Applied physics A-materials science and processing, 2014, 114(8): 309–313.

Article  Google Scholar 

KARAN H, BISWAS A. Improving performance of light-emitting diodes using InGaN/GaN MQWs with varying trapezoidal bottom well width[J]. Optik, 2021, 247: 167888.

Article  Google Scholar 

HENGSTETER J, PRAJOON P, NIRMAL D. Analysis of high efficiency InGaN multiple quantum-well light-emitting-diodes using InGaN step-graded barriers[J]. Journal of nanoelectronics and optoelectronics, 2018, 13(6): 939–943.

Article  Google Scholar 

JIA C Y, YU T J, FENG X H, et al. Performance improvement of GaN-based near-UV LEDs with InGaN/AlGaN superlattices strain relief layer and AlGaN barrier[J]. Superlattices and microstructures, 2016, 97: 417–423.

Article  MathSciNet  Google Scholar 

WOLNY P, TURSKI H, MUZIOL G, et al. Impact of interfaces on photoluminescence efficiency of high-indium-content (In, Ga)N quantum wells[J]. Physical review applied, 2023, 19(1): 014044.

Article  Google Scholar 

SHARIF M N, WALI Q, REHMAN H U, et al. Sensitivity of indium molar fraction in InGaN quantum wells for near-UV light-emitting diodes[J]. Micro and nanostructures, 2022, 165: 207208.

Article  Google Scholar 

JIANG Y R, CHENG L W, LIN X Y, et al. Composition-graded quantum barriers improve performance in InGaN-based laser diodes[J]. Semiconductor science and technology, 2021, 36(11): 115001.

Article  Google Scholar 

FANG G T, ZHANG M, XIONG D Y. On the near-pole hole insertion layer and the far-pole hole insertion layer for multi-quantum-well deep ultraviolet light-emitting diodes[J]. Nanomaterials, 2022, 12(4): 629.

Article  Google Scholar 

MAEDA N, JO M, HIRAYAMA H. Improving the light-extraction efficiency of AlGaN DUV-LEDs by using a superlattice hole spreading layer and an Al reflector[J]. Physica status solidi A-applications and materials science, 2018, 215: 1700436.

Article  Google Scholar 

SHARIF M N, USMAN M, NIASS M I, et al. Compositionally graded AlGaN hole source layer for deep-ultraviolet nanowire light-emitting diode without electron blocking layer[J]. Nanotechnology, 2021, 33(7): 075205.

Article  Google Scholar 

NIASS M I, SHARIF M N, WANG Y F, et al. Enhance ment of the optoelectronic characteristics of deep ultraviolet nanowire laser diodes by induction of bulk polarization charge with graded AlN composition in AlxGa1−xN waveguide[J]. Superlattices and microstructures, 2020, 145: 106643.

Article  Google Scholar 

TURIN V O. A modified transferred-electron high-field mobility model for GaN devices simulation[J]. Solid state electronics, 2005, 49(10): 1678–1682.

Article  Google Scholar 

LIU J P, RYOU J H, DUPUIS R D, et al. Barrier effect on hole transport and carrier distribution in InGaN/GaN multiple quantum well visible light-emitting diodes[J]. Applied physics letters, 2008, 93(2): 021102.

Article  Google Scholar 

BERCHA A, TRZECIAKOWSK W, MUZIO G, et al. Evidence for “dark charge” from photoluminescence measurements in wide InGaN quantum wells[J]. Optics express, 2023, 31(2): 3227–3236.

Article  Google Scholar 

留言 (0)

沒有登入
gif