Research of surface-enhanced Raman scattering on Ag@PMBA@C@Au hybrid nanoparticles

NIE S M, EMERY S R. Probing single molecules and single nanoparticles by surface-enhanced Raman scattering[J]. Science, 1997, 275(5303): 1102–1106.

Article  Google Scholar 

SITJAR J, XU H Z, LIU C Y, et al. Synergistic surface-enhanced Raman scattering effect to distinguish live SARS-CoV-2 S pseudovirus[J]. Analytica chimica acta, 2022, 1193: 339406.

Article  Google Scholar 

YADAV S, KHANAM R, SINGH J P. A purview into highly sensitive magnetic SERS detection of hemozoin biomarker for rapid malaria diagnosis[J]. Sensors and actuators B-chemical, 2022, 355: 131303.

Article  Google Scholar 

MCDONNELL C, ALBARGHOUTHI F M, SELHORST R, et al. Aerosol jet printed surface-enhanced Raman substrates: application for high-sensitivity detection of perfluoroalkyl substances[J]. ACS omega, 2023, 8(1): 1597–1605.

Article  Google Scholar 

ZHAO W S, YANG S, ZHANG D X, et al. Based on optimized aptamers-functionalized magnetic capture probes and graphene oxide-Au nanostars SERS tags[J]. Journal of colloid and interface science, 2022, 634: 651–663.

Article  Google Scholar 

LI P Z, XIA X H, CHEN J N, et al. Morphology-regulated core-shell Ag@Au NPs for rapid SERS detection of 1-amino-hydantoin (AHD) in crayfish[J]. Food and agricultural immunology, 2022, 33(1): 832–847.

Article  Google Scholar 

ZHAO M M, LIU W Y, DU J G, et al. Multidimensional Co3O4 nano sponge for the highly sensitive SERS applications[J]. Optoelectronics letters, 2017, 13(1): 38–41.

Article  Google Scholar 

DOERING W E, NIE S M. Spectroscopic tags using dye-embedded nanoparticles and surface-enhanced Raman scattering[J]. Analytical chemistry, 2003, 75(22): 6171–6176.

Article  Google Scholar 

CAO Y W, JIN R C, MIRKIN C A. Nanoparticles with Raman spectroscopic fingerprints for DNA and RNA detection[J]. Science, 2002, 297: 1536–1540.

Article  Google Scholar 

YAN M M, LI H D, LI M, et al. Advances in surface-enhanced Raman scattering-based aptasensors for food safety detection[J]. Journal of agricultureal and food chemistry, 2021, 69(47): 14049–14064.

Article  Google Scholar 

SHANMUKH S, JONES L, DRISKELL J, et al. Rapid and sensitive detection of respiratory virus molecular signatures using a silver nanorod array SERS substrate[J]. Nano letters, 2006, 6(11): 2630–2636.

Article  Google Scholar 

DOERING W E, PIOTTI M E, NATAN M J, et al. SERS as a foundation for nanoscale optically detected biological labels[J]. Advanced materials, 2007, 19: 3100–3108.

Article  Google Scholar 

WANG C G, CHEN Y, WANG T T, et al. Monodispersed gold nanorod-embedded silica particles as novel Raman labels for biosensing[J]. Advanced functional materials, 2008, 18(2): 55–361.

Article  Google Scholar 

KONG K V, LAM Z Y, LAU W K O, et al. A transition metal carbonyl probe for use in a highly specific and sensitive SERS-based assay for glucose[J]. Journal of the American chemical society, 2013, 135(48): 18028–18031.

Article  Google Scholar 

NIE B B, LUO Y Y, SHI J P, et al. Bowl-like pore array made of hollow Au/Ag alloy nanoparticles for SERS detection of melamine in solid milk powder[J]. Sensors and actuators B-chemical, 2019, 301: 127087.

Article  Google Scholar 

LI S Z, PEDANO M L, CHANG S H, et al. Gap structure effects on surface-enhanced Raman scattering intensities for gold gapped rods[J]. Nano letters, 2010, 10(5): 1722–1727.

Article  Google Scholar 

YAMAMOTO Y S, ITOH T. Why and how do the shapes of surface-enhanced Raman scattering spectra change? Recent progress from mechanistic studies[J]. Journal of Raman spectroscopy, 2016, 47(1): 78–88.

Article  Google Scholar 

ITOH T, YOSHIDA K, ISHIKAWA M. Experimental demonstration of the electromagnetic mechanism underlying surface enhanced Raman scattering using single nanoparticle spectroscopy[J]. Journal of photochemistry and photobiology A-chemistry, 2011, 219(2–3): 167–179.

Article  Google Scholar 

DVOYNENKO M M, WANG J K. Finding electromagnetic and chemical enhancement factors of surface-enhanced Raman scattering[J]. Nano letters, 2007, 32(24): 3552–3554.

Google Scholar 

SHIN K S. Effect of surface morphology on surface-enhanced Raman scattering of 4-aminobenzenethiol adsorbed on gold substrates[J]. Journal of Raman spectroscopy, 2008, 39(4): 468–473.

Article  Google Scholar 

KIM J, JANG Y, KIM N J, et al. Study of chemical enhancement mechanism in non-plasmonic surface enhanced Raman spectroscopy (SERS)[J]. Frontiers in chemistry, 2019, 7: 582.

Article  Google Scholar 

LAN L L, GAO Y M, FAN X, et al. The origin of ultrasensitive SERS sensing beyond plasmonics[J]. Frontiers of physics, 2021, 16(4): 43300.

Article  Google Scholar 

LI W Y, CAMARGO P H C, LU X M, et al. Dimers of silver nanospheres: facile synthesis and their use as hot spots for surface-enhanced Raman scattering[J]. Nano letters, 2009, 9(1): 485–490.

Article  Google Scholar 

DADOSH T, SPERLING J, BRYANT G W, et al. Plasmonic control of the shape of the Raman spectrum of a single molecule in a silver nanoparticle dimer[J]. ACS nano, 2009, 3(7): 1988–1994.

Article  Google Scholar 

SHEN A G, CHEN L F, XIE W, et al. Triplex Au-Ag-C core shell nanoparticles as a novel Raman label[J]. Advanced functional materials, 2010, 20(6): 969–975.

Article  Google Scholar 

SUN X M, LI Y D. Ag@C core/shell structured nanoparticles: controlled synthesis, characterization, and assembly[J]. Langmuir, 2005, 21: 6019–6024.

Article  Google Scholar 

ZHANG X J, LU Z Y, SIM D H, et al. Controlled synthesis of Ag/Ag/C hybrid nanostructures and their surface-enhanced Raman scattering properties[J]. Chemistry-A European journal, 2011, 17(48): 13386–13390.

Article  Google Scholar 

ORENDORFF C J, GOLE A, SAU T K, et al. Surface-enhanced Raman spectroscopy of self-assembled monolayers: sandwich architecture and nanoparticle shape dependence[J]. Analytical chemistry, 2005, 77(10): 3261–3266.

Article  Google Scholar 

MAYE M M, NYKYPANCHUK D, CUISINIER M, et al. Stepwise surface encoding for high-throughput assembly of nanoclusters[J]. Nature materials, 2009, 8: 388–391.

Article  Google Scholar 

CAO M, WANG M, GU N. Calculated optical properties of dielectric shell coated gold nanorods[J]. Chinese physics letters, 2009, 26(4): 045201.

Article  Google Scholar 

PENA-RODRIGUEZ O, PAL U. Enhanced plasmonic behavior of bimetallic (Ag-Au) multilayered spheres[J]. Nanoscale research letters, 2011, 6: 279.

Article  Google Scholar 

YANG M, ALVAREZ-PUEBLA R, KIM H S, et al. SERS-active gold lace nanoshells with built-in hotspots[J]. Nano letters, 2010, 10(10): 4013–4019.

Article  Google Scholar 

KLEINMAN S L, RINGE E, VALLEY N, et al. Single-molecule surface-enhanced Raman spectroscopy of crystal violet isotopologues: theory and experiment[J]. Journal of the American chemistry society, 2011, 133(11): 4115–4122.

Article  Google Scholar 

ZHU C H, MENG G W, HUANG Q, et al. Au hierarchical micro/nanotower arrays and their improved SERS effect by Ag nanoparticle decoration[J]. Crystal growth & design, 2011, 11(3): 748–752.

Article  Google Scholar 

KAMINSKA A, DZIECIELEWSKI I, WEYHER J L, et al. Highly reproducible, stable and multiply regenerated surface-enhanced Raman scattering substrate for biomedical applications[J]. Journal of materials chemistry, 2011, 21(24): 8662–8669.

Article  Google Scholar 

留言 (0)

沒有登入
gif