Zegers-Hochschild, F. et al. The international glossary on infertility and fertility care, 2017. Fertil. Steril. 108, 393–406 (2017).
Agarwal, A. et al. Male infertility. Lancet 397, 319–333 (2021).
Agarwal, A., Mulgund, A., Hamada, A. & Chyatte, M. R. A unique view on male infertility around the globe. Reprod. Biol. Endocrinol. 13, 37 (2015).
Article PubMed PubMed Central Google Scholar
Practice Committee of the American Society for Reproductive Medicine. Diagnostic evaluation of the infertile male: a committee opinion. Fertil. Steril. 103, e18–e25 (2015).
Carlsen, E., Giwercman, A., Keiding, N. & Skakkebaek, N. E. Evidence for decreasing quality of semen during past 50 years. BMJ 305, 609–613 (1992).
Article CAS PubMed PubMed Central Google Scholar
Mínguez-Alarcón, L. et al. Secular trends in semen parameters among men attending a fertility center between 2000 and 2017: identifying potential predictors. Environ. Int. 121, 1297–1303 (2018).
Article PubMed PubMed Central Google Scholar
Sengupta, P., Dutta, S. & Krajewska-Kulak, E. The disappearing sperms: analysis of reports published between 1980 and 2015. Am. J. Mens. Health 11, 1279–1304 (2017).
Abbaspour, N., Hurrell, R. & Kelishadi, R. Review on iron and its importance for human health. J. Res. Med. Sci. 19, 164–174 (2014).
PubMed PubMed Central Google Scholar
Gulek, S., Anderson, G. J. & Collins, J. F. Mechanistic and regulatory aspects of intestinal iron absorption. Am. J. Physiol. Gastrointest. Liver Physiol. 307, G397–G409 (2014).
Sebastiani, G., Wilkinson, N. & Pantopoulos, K. Pharmacological targeting of the hepcidin/ferroportin axis. Front. Pharmacol. 7, 160 (2016).
Article PubMed PubMed Central Google Scholar
Ginzburg, Y. Z. Chapter two - hepcidin-ferroportin axis in health and disease. in: Litwack, G. (ed.) Vitamins and Hormones. 110, 17–45 (Academic Press, 2019).
Nemeth, E. & Ganz, T. The role of hepcidin in iron metabolism. Acta Haematol. 122, 2284–2288 (2009).
Wang, L. & Cherayil, B. J. Ironing out the wrinkles in host defense: interactions between iron homeostasis and innate immunity. J. Innate Immun. 1, 455–464 (2009).
Article CAS PubMed PubMed Central Google Scholar
Musci, G., Polticelli, F. & Bonaccorsi di Patti, M. C. Ceruloplasmin-ferroportin system of iron traffic in vertebrates. World J. Biol. Chem. 5, 204–215 (2014).
PubMed PubMed Central Google Scholar
Bartnikas, T. B. Known and potential roles of transferrin in iron biology. Biometals 25, 677–686 (2012).
Article CAS PubMed PubMed Central Google Scholar
Sasaki, R., Masuda, S. & Nagao, M. Erythropoietin: multiple physiological functions and regulation of biosynthesis. Biosci. Biotechnol. Biochem. 64, 1775–1793 (2000).
Article CAS PubMed Google Scholar
Tremellen, K. Oxidative stress and male infertility–a clinical perspective. Hum. Reprod. Update 14, 243–258 (2008).
Article CAS PubMed Google Scholar
Farid, Y., Bowman, N. S. & Lecat, P. Biochemistry, hemoglobin synthesis. In: StatPearls. (StatPearls Publishing, 2022).
Harewood, J. & Azevedo, A. M. Alpha thalassemia. In: StatPearls. (StatPearls Publishing, 2022).
Forget, B. G. & Bunn, H. F. Classification of the disorders of hemoglobin. Cold Spring Harb. Perspect. Med. 3, a011684 (2013).
Article PubMed PubMed Central Google Scholar
Therrell, B. L., Lloyd-Puryear, M. A., Eckman, J. R. & Mann, M. Y. Newborn screening for sickle cell diseases in the United States: a review of data spanning 2 decades. Semin. Perinatol. 39, 238–251 (2015).
Sedrak A & Kondamudi NP. Sickle Cell Disease. (StatPearls Publishing, 2022).
Sundd, P., Gladwin, M. T. & Novelli, E. M. Pathophysiology of sickle cell disease. Annu. Rev. Pathol. 14, 263–292 (2019).
Article CAS PubMed Google Scholar
Rees, D. C., Williams, T. N. & Gladwin, M. T. Sickle-cell disease. Lancet 376, 2018–2031 (2010).
Article CAS PubMed Google Scholar
Yasara, N., Premawardhena, A. & Mettananda, S. A comprehensive review of hydroxyurea for β-haemoglobinopathies: the role revisited during COVID-19 pandemic. Orphanet J. Rare Dis. 16, 114 (2021).
Article PubMed PubMed Central Google Scholar
Taddesse, A. et al. Hypogonadism in patients with sickle cell disease: central or peripheral? Acta Haematol. 128, 65–68 (2012).
Article CAS PubMed Google Scholar
Fageera, W. et al. Placebo response and its determinants in children with ADHD across multiple observers and settings: a randomized clinical trial. Int. J. Methods Psychiatr. Res. 27, e1572 (2018).
Smith-Whitley, K. Reproductive issues in sickle cell disease. Blood 124, 3538–3543 (2014).
Article CAS PubMed Google Scholar
Berthaut, I. et al. Influence of sickle cell disease and treatment with hydroxyurea on sperm parameters and fertility of human males. Haematologica 93, 988–993 (2008).
Article CAS PubMed Google Scholar
Nahoum, C. R., Fontes, E. A. & Freire, F. R. Semen analysis in sickle cell disease. Andrologia 12, 542–545 (1980).
Article CAS PubMed Google Scholar
Shin, J.-H., Mori, C. & Shiota, K. Involvement of germ cell apoptosis in the induction of testicular toxicity following hydroxyurea treatment. Toxicol. Appl. Pharmacol. 155, 139–149 (1999).
Article CAS PubMed Google Scholar
Jones, K. M. et al. Adverse effects of a clinically relevant dose of hydroxyurea used for the treatment of sickle cell disease on male fertility endpoints. Int. J. Environ. Res. Public. Health 6, 1124–1144 (2009).
Article CAS PubMed PubMed Central Google Scholar
Sahoo, L. K. et al. Study of seminal fluid parameters and fertility of male sickle cell disease patients and potential impact of hydroxyurea treatment. J. Assoc. Physicians India 65, 22–25 (2017).
Isabelle, B. et al. Adverse effect of hydroxyurea on spermatogenesis in patients with sickle cell anemia after 6 months of treatment. Blood 130, 2354–2356 (2017).
Joseph, L. et al. Effect of hydroxyurea exposure before puberty on sperm parameters in males with sickle cell disease. Blood 137, 826–829 (2021).
Article CAS PubMed Google Scholar
As, G. et al. Hydroxyurea does not affect the spermatogonial pool in prepubertal patients with sickle cell disease. Blood 137, 856–859 (2021).
Fitzhugh, C. D. & Walters, M. C. The case for HLA-identical sibling hematopoietic stem cell transplantation in children with symptomatic sickle cell anemia. Blood Adv. 1, 2563–2567 (2017).
Article PubMed PubMed Central Google Scholar
Sargur Madabushi, S. et al. Development and characterization of a preclinical total marrow irradiation conditioning-based bone marrow transplant model for sickle cell disease. Front. Oncol. 12, 969429 (2022).
Article PubMed PubMed Central Google Scholar
Bhatia, M. et al. Reduced toxicity, myeloablative conditioning with BU, fludarabine, alemtuzumab and SCT from sibling donors in children with sickle cell disease. Bone Marrow Transpl. 49, 913–920 (2014).
Zhao, J. et al. Adolescent male fertility following reduced-intensity conditioning regimen for hematopoietic stem cell transplantation in non-malignant disorders. Pediatr. Transplant. 23, e13496 (2019).
Can, B. et al. Gonadal status and sexual function at long-term follow-up after allogeneic stem cell transplantation in adult patients with sickle cell disease. Exp. Clin. Transplant. https://doi.org/10.6002/ect.2021.0392 (2022).
Abraham, A. A. & Tisdale, J. F. Gene therapy for sickle cell disease: moving from the bench to the bedside. Blood 138, 932–941 (2021).
Article CAS PubMed PubMed Central Google Scholar
Kanter, J. et al. Biologic and clinical efficacy of lentiglobin for sickle cell disease. N. Engl. J. Med. 386, 617–628 (2022).
Article CAS PubMed Google Scholar
Musicki, B. & Burnett, A. L. Testosterone deficiency in sickle cell disease: recognition and remediation. Front. Endocrinol. 13, 892184 (2022).
Araujo, A. B. et al. Prevalence and incidence of androgen deficiency in middle-aged and older men: estimates from the Massachusetts Male Aging Study. J. Clin. Endocrinol. Metab. 89, 5920–5926 (2004).
留言 (0)