Double Fano resonances in disk-nonconcentric ring plasmonic nanostructures

LIMONOV M, RYBIN M V, PODDUBNY A N, et al. Fano resonances in photonics[J]. Nature photonics, 2017, 11(9): 543–554.

Article  Google Scholar 

PILOZZI L, MISSORI M, CONTI C. Observation of terahertz transition from Fano resonances to bound states in the continuum[J]. Optics letters, 2023, 48(9): 2381–2384.

Article  ADS  Google Scholar 

LEE S C, BRUECK S. Analysis of Fano lineshape in extraordinary optical transmission[J]. Optics letters, 2022, 47(8): 2020–2023.

Article  ADS  Google Scholar 

LIMONOV M F. Fano resonance for applications[J]. Advances in optics and photonics, 2021, 13(3): 703–771.

Article  ADS  Google Scholar 

FENG G, CHEN Z, WANG Y, et al. Enhanced Fano resonance for high-sensitivity sensing based on bound states in the continuum[J]. Chinese optics letters, 2023, 21(3): 031202.

Article  ADS  Google Scholar 

DU M, SHEN Z. Enhanced and tunable double Fano resonances in plasmonic metasurfaces with nanoring dimers[J]. Journal of physics D: applied physics, 2021, 54(14): 145106.

Article  ADS  Google Scholar 

WU L, WANG Y, LIAO L, et al. Enhanced second-harmonic generation by Fano resonance of polaritons[J]. Applied physics express, 2021, 14(8): 082002.

Article  ADS  Google Scholar 

WANG J H, WANG S P, MELENTIEV P N, et al. SPASER as nanoprobe for biological applications: current state and opportunities[J]. Laser & photonics reviews, 2022, 16(7): 2100622.

Article  ADS  Google Scholar 

CHEN Z, ZHANG S, CHEN Y, et al. Double Fano resonances in hybrid disk/rod artificial plasmonic molecules based on dipole-quadrupole coupling[J]. Nanoscale, 2020, 12(17): 9776–9785.

Article  Google Scholar 

WANG Y, YU S, GAO Z, et al. Excitations of multiple Fano resonances based on permittivity-asymmetric dielectric meta-surfaces for nano-sensors[J]. IEEE photonics journal, 2022, 14(1): 1–7.

Google Scholar 

RICCARDI M, MARTIN O J F. Role of electric currents in the Fano resonances of connected plasmonic structures[J]. Optics express, 2021, 29(8): 11635–11644.

Article  ADS  Google Scholar 

GHAHREMANI M, HABIL M K, ZAPATA-RODRIGUEZ C J. Anapole-assisted giant electric field enhancement for surface-enhanced coherent anti-Stokes Raman spectroscopy[J]. Scientific reports, 2021, 11(1): 10639.

Article  ADS  Google Scholar 

ZHAO H, FAN X, WEI X, et al. Highly sensitive multiple Fano resonances excitation on all-dielectric metastructure[J]. Optical review, 2023, 30(2): 208–216.

Article  ADS  Google Scholar 

HU H J, ZHANG F W, LI G Z, et al. Fano resonances with a high figure of merit in silver oligomer systems[J]. Photonics research, 2018, 6(3): 204–213.

Article  Google Scholar 

QI J, MIAO R, LI C, et al. Tunable multiple plasmon resonances and local field enhancement of a structure comprising a nanoring and a built-in nanocross[J]. Optics communications, 2018, 421: 19–24.

Article  ADS  Google Scholar 

ZHANG X, LIU F, YAN X, et al. Multipolar Fano resonances in concentric semi-disk ring cavities[J]. Optik, 2020, 200: 163416.

Article  ADS  Google Scholar 

ZHANG Y, HUO Y, CAI N, et al. Manipulation of multiple magnetic Fano resonances in nonconcentric asymmetric ring-ring nanostructure[J]. Materials research express, 2018, 5(2): 025012.

Article  ADS  Google Scholar 

WANG Z, REN L. High-order surface plasmonic resonance and near field enhancement in asymmetric nanoring/ellipsoid dimers[J]. Journal of applied spectroscopy, 2018, 85(3): 506–510.

Article  ADS  Google Scholar 

QIU R, LIN H, HUANG J, et al. Tunable multipolar Fano resonances and electric field enhancements in Au ring-disk plasmonic nanostructures[J]. Materials, 2018, 11(9): 1576.

Article  ADS  Google Scholar 

ZHANG Y, MING X, LIU G, et al. Narrow dark resonance modes in concentric ring/disk cavities[J]. Journal of the optical society of America B, 2015, 32(9): 1979–1985.

Article  ADS  Google Scholar 

LIU S, YUE P, ZHU M, et al. Restoring the silenced surface second-harmonic generation in split-ring resonators by magnetic and electric mode matching[J]. Optics express, 2019, 27(19): 26377–26391.

Article  ADS  Google Scholar 

HE J, FAN C, WANG J, et al. A giant localized field enhancement and high sensitivity in an asymmetric ring by exhibiting Fano resonance[J]. Journal of optics, 2013, 15(2): 025007.

Article  ADS  Google Scholar 

CUI J, JI B, SONG X, et al. Efficient modulation of multipolar Fano resonances in asymmetric ring-disk/split-ring-disk nanostructure[J]. Plasmonics, 2019, 14(1): 41–52.

Article  Google Scholar 

ZHANG X, YAN X, LIU F, et al. Symmetric and antisymmetric multipole mode-based Fano resonances in split theta-shaped nanocavities[J]. Plasmonics, 2021, 16(4): 1041–1048.

Article  Google Scholar 

TAFLOVE A, HAGNESS S. Computational electrodynamics: the finite-difference time-domain method[M]. Boston: Artech House, 2000: 19–45.

Google Scholar 

JOHNSON P B, CHRISTY R W. Optical constants of the noble metals[J]. Physical review B, 1972, 6(12): 4370–4379.

Article  ADS  Google Scholar 

ZHANG X, LIU F, YAN X, et al. Symmetric and antisymmetric multipole electric-magnetic Fano resonances in elliptic disk-nonconcentric split ring plasmonic nanostructures[J]. Journal of optics, 2020, 22(11): 115003.

Article  ADS  Google Scholar 

ZHANG L, DONG Z, WANG Y M, et al. Dynamically configurable hybridization of plasmon modes in nanoring dimer arrays[J]. Nanoscale, 2015, 7(28): 12018–12022.

Article  ADS  Google Scholar 

HAO F, SONNEFRAUD Y, VAN DORPE P, et al. Symmetry breaking in plasmonic nanocavities: subradiant LSPR sensing and a tunable Fano resonance[J]. Nano letters, 2008, 8(11): 3983–3988.

Article  ADS  Google Scholar 

ZHANG Y, JIA T, ZHANG H, et al. Fano resonances in disk-ring plasmonic nanostructure: strong interaction between bright dipolar and dark multipolar mode[J]. Optics letters, 2012, 37(23): 4919–4921.

Article  ADS  Google Scholar 

DANA B D, KOYA A N, SONG X, et al. Effect of symmetry breaking on plasmonic coupling in nanoring dimers[J]. Plasmonics, 2020, 15(6): 1977–1988.

Article  Google Scholar 

留言 (0)

沒有登入
gif