Improvement of maximum power point tracking in photovoltaic arrays in different environments using hybrid algorithms

BHUKYA L, NANDIRAJU S. A novel photovoltaic maximum power point tracking technique based on grasshopper optimized fuzzy logic approach[J]. International journal of hydrogen energy, 2020, 45(16): 9416–9427.

Article  Google Scholar 

CHEN S, LIU X, NIELSEN C, et al. Improved air quality in China can enhance solar-power performance and accelerate carbon-neutrality targets[J]. One earth, 2022, 5(5): 550–562.

Article  ADS  Google Scholar 

MOTAHHIR S, El HAMMOUMI A, EI GHZIZAL A. The most used MPPT algorithms: review and the suitable low-cost embedded board for each algorithm[J]. Journal of cleaner production, 2020, 246: 118983.

Article  Google Scholar 

HUYNH D C, DUNNIGAN M W. Development and comparison of an improved incremental conductance algorithm for tracking the MPP of a solar PV panel[J]. IEEE transactions on sustainable energy, 2016, 7(4): 1421–1429.

Article  ADS  Google Scholar 

FAN L S. Application in photovoltaic MPPT based on improved hysteresis loop comparison method[J]. Journal of physics, 2021, 2113: 1742–6588.

Google Scholar 

MAO M, CUI L, ZHANG Q, et al. Classification and summarization of solar photovoltaic MPPT techniques: a review based on traditional and intelligent control strategies[J]. Energy reports, 2020, 6: 1312–1327.

Article  Google Scholar 

BIRANE M, LARBES C, CHEKNANE A. Comparative study and performance evaluation of central and distributed topologies of photovoltaic system[J]. International journal of hydrogen energy, 2017, 42(13): 8703–8711.

Article  Google Scholar 

DONG L K G. Optimal design of photovoltaic MPPT disturbance step length in a rapidly changing environment[J]. Journal of physics, 2021, 1: 1742–6596.

Google Scholar 

VITORINO M A, HARTMANN L V, LIMA M N. An intelligent control strategy of fractional short circuit current maximum power point tracking technique for photovoltaic applications[J]. Journal of renewable and sustainable energy, 2015, 7(1): 15.

Google Scholar 

AHMED B. A hybrid MPPT technique for solar photovoltaic system under partial shading[J]. Engineering proceedings, 2021, 12(1): 28.

ADS  Google Scholar 

IM Y C, KWAK S S, PARK J, et al. Intermittent FOCV using an I-V curve tracer for minimizing energy loss[J]. Sciences-Basel, 2021, 11(19): 9006.

Google Scholar 

HUANG P C, KUO TH. A 100-pA adaptive-FOCV MPPT circuit with >99.6% tracking efficiency for indoor light energy harvesting[C]//15th IEEE Asian Solid-State Circuits Conference (A-SSCC), November 4–6, 2019, Macau, China. New York: IEEE, 2019: 185–188.

Google Scholar 

JATELY V, AZZOPARDI B, JOSHI J, et al. Experimental analysis of hill-climbing MPPT algorithms under low irradiance levels[J]. Renewable and sustainable energy reviews, 2021, 150: 111467.

Article  Google Scholar 

ALQAISIA Z, MAHMOUD Y. Comprehensive study of partially shaded PV modules with overlapping diodes[J]. IEEE access, 2019, 7: 172665–172675.

Article  Google Scholar 

ABOUADANE H, FAKKAR A, SERA D, et al. Multiple-power-sample based P&O MPPT for fast-changing irradiance conditions for a simple implementation[J]. IEEE journal of photovoltaics, 2020, 10(5): 1481–1488.

Article  Google Scholar 

OWUSU-NYARKO I, ELGENEDY M A, ABDEL-SALAM I, et al. Modified variable step-size incremental conductance MPPT technique for photovoltaic systems[J]. Electronics, 2021, 10(19): 2331.

Article  Google Scholar 

SHEHU M M, DONG M, HU J S. Optimization of particle swarm based MPPT under partial shading conditions in photovoltaic systems[C]//16th IEEE Conference on Industrial Electronics and Applications (ICIEA), August 1–4, 2021, Chengdu, China. New York: IEEE, 2021: 267–272.

Google Scholar 

WU Z, YU D. Application of improved bat algorithm for solar PV maximum power point tracking under partially shaded condition[J]. Applied soft computing, 2018, 62: 101–109.

Article  Google Scholar 

REZK H, FATHY A, ALY M. A robust photovoltaic array reconfiguration strategy based on coyote optimization algorithm for enhancing the extracted power under partial shadow condition[J]. Energy reports, 2021, 7: 109–124.

Article  Google Scholar 

ELTAMALY A M. An improved cuckoo search algorithm for maximum power point tracking of photovoltaic systems under partial shading conditions[J]. Energies, 2021, 14(4): 953.

Article  Google Scholar 

IBRAHIM M N, REZK H, AL-DHAIFALLAH M, et al. Solar array fed synchronous reluctance motor driven water pump: an improved performance under partial shading conditions[J]. IEEE access, 2016, 7: 77100–77115.

Article  Google Scholar 

RAMYAR A, IMAN-EINI H, FARHANGI S. Global maximum power point tracking method for photovoltaic arrays under partial shading conditions[J]. IEEE transactions on industrial electronics, 2017, 64(4): 2855–2864.

Article  Google Scholar 

TEUSCHL Y, TABORSKY B, TABORSKY M. How do cuckoos find their hosts? The role of habitat imprinting[J]. Animal behaviour, 1998, 56(6): 1425–1433.

Article  Google Scholar 

REYNLDS A M, FRYE M A. Free-flight odor tracking in drosophila is consistent with an optimal intermittent scale-free search[J]. Plos one, 2007, 2(4).

AHMED J, SALAM Z. A maximum power point tracking (MPPT) for PV system using cuckoo search with partial shading capability[J]. Applied energy, 2014, 119(15): 118–130.

Article  ADS  Google Scholar 

YANG X S, DEB S. Cuckoo search: state-of-the-art and opportunities[C]//4th IEEE International Conference on Soft Computing & Machine Intelligence (ISCMI), November 23–24, 2017, Mauritius. New York: IEEE, 2017: 55–59.

Google Scholar 

留言 (0)

沒有登入
gif