Research Progress on the Cardiotoxicity of EGFR-TKIs in Non-Small Cell Lung Cancer

Mamdani H, Matosevic S, Khalid AB, Durm G, Jalal SI. Immunotherapy in Lung Cancer: Current Landscape and Future Directions. Front Immunol. 2022;13: 823618. https://doi.org/10.3389/fimmu.2022.823618.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sun X, Xu S, Yang Z, Zheng P, Zhu W. Epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors for the treatment of non-small cell lung cancer: a patent review (2014-present). Expert Opin Ther Pat. 2021;31:223–38. https://doi.org/10.1080/13543776.2021.1860210.

Article  CAS  PubMed  Google Scholar 

Abdelgalil AA, Al-Kahtani HM, Al-Jenoobi FI. Erlotinib. Profiles Drug Subst Excip Relat Methodol. 2020;45:93–117. https://doi.org/10.1016/bs.podrm.2019.10.004.

Article  CAS  PubMed  Google Scholar 

Kanazawa S, et al. Gefitinib affects functions of platelets and blood vessels via changes in prostanoids balance. Clin Appl Thromb Hemost. 2005;11:429–34. https://doi.org/10.1177/107602960501100409.

Article  CAS  PubMed  Google Scholar 

Lynch DR Jr, Kickler TS, Rade JJ. Recurrent myocardial infarction associated with gefitinib therapy. J Thromb Thrombolysis. 2011;32:120–4. https://doi.org/10.1007/s11239-010-0539-4.

Article  CAS  PubMed  Google Scholar 

Gronich N, et al. Tyrosine kinase-targeting drugs-associated heart failure. Br J Cancer. 2017;116:1366–73. https://doi.org/10.1038/bjc.2017.88.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Omori S, Oyakawa T, Naito T, Takahashi T. Gefitinib-Induced Cardiomyopathy in Epidermal Growth Receptor-Mutated NSCLC. J Thorac Oncol. 2018;13:e207–8. https://doi.org/10.1016/j.jtho.2018.05.020.

Article  PubMed  Google Scholar 

Morissette P, et al. QT interval correction assessment in the anesthetized guinea pig. J Pharmacol Toxicol Methods. 2015;75:52–61. https://doi.org/10.1016/j.vascn.2015.05.007.

Article  CAS  PubMed  Google Scholar 

Korashy HM, et al. Molecular mechanisms of cardiotoxicity of gefitinib in vivo and in vitro rat cardiomyocyte: Role of apoptosis and oxidative stress. Toxicol Lett. 2016;252:50–61. https://doi.org/10.1016/j.toxlet.2016.04.011.

Article  CAS  PubMed  Google Scholar 

Alanazi WA, et al. Angiotensin II type 1 receptor blockade attenuates gefitinib-induced cardiac hypertrophy via adjusting angiotensin II-mediated oxidative stress and JNK/P38 MAPK pathway in a rat model. Saudi Pharm J. 2022;30: 1159–1169. https://doi.org/10.1016/j.jsps.2022.06.020. The possible mechanism of gefitinib induced cardiac hypertrophy was proposed.

Alhoshani A, et al. EGFR Inhibitor Gefitinib Induces Cardiotoxicity through the Modulation of Cardiac PTEN/Akt/FoxO3a Pathway and Reactive Metabolites Formation: In Vivo and in Vitro Rat Studies. Chem Res Toxicol. 2020; 33: 1719–1728. https://doi.org/10.1021/acs.chemrestox.0c00005.

AlAsmari AF, et al. Liraglutide attenuates gefitinib-induced cardiotoxicity and promotes cardioprotection through the regulation of MAPK/NF-kappaB signaling pathways. Saudi Pharm J. 2020; 28: 509–518. https://doi.org/10.1016/j.jsps.2020.03.002. This study determined the effectiveness of Liraglutide in protecting the heart from gefitinib damage and its possible mechanism, and also demonstrated the possible mechanism of gefitinib on heart damage.

Jie LJ, et al. Mechanisms of gefitinib-induced QT prolongation. Eur J Pharmacol. 2021;910: 174441. https://doi.org/10.1016/j.ejphar.2021.174441.

Article  CAS  PubMed  Google Scholar 

Senderowicz AM, et al. Erlotinib/gemcitabine for first-line treatment of locally advanced or metastatic adenocarcinoma of the pancreas. Oncology (Williston Park). 2007;21: 1696–1706; discussion 1706–1699, 1712, 1715.

Kus T, Aktas G, Sevinc A, Kalender ME, Camci C. Could erlotinib treatment lead to acute cardiovascular events in patients with lung adenocarcinoma after chemotherapy failure? Onco Targets Ther. 2015;8:1341–3. https://doi.org/10.2147/OTT.S84480.

Article  PubMed  PubMed Central  Google Scholar 

Ding S, Long F, Jiang S. Acute myocardial infarction following erlotinib treatment for NSCLC: A case report. Oncol Lett. 2016;11:4240–4. https://doi.org/10.3892/ol.2016.4508.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pinquie F, de Chabot G, Urban T, Hureaux J. Maintenance Treatment by Erlotinib and Toxic Cardiomyopathy: A Case Report. Oncology. 2016;90:176–7. https://doi.org/10.1159/000444186.

Article  CAS  PubMed  Google Scholar 

Doherty KR, et al. Multi-parameter in vitro toxicity testing of crizotinib, sunitinib, erlotinib, and nilotinib in human cardiomyocytes. Toxicol Appl Pharmacol. 2013;272:245–55. https://doi.org/10.1016/j.taap.2013.04.027.

Article  CAS  PubMed  Google Scholar 

Kloth JS, et al. Incidence and relevance of QTc-interval prolongation caused by tyrosine kinase inhibitors. Br J Cancer. 2015;112:1011–6. https://doi.org/10.1038/bjc.2015.82.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Herrmann J. Adverse cardiac effects of cancer therapies: cardiotoxicity and arrhythmia. Nat Rev Cardiol. 2020;17:474–502. https://doi.org/10.1038/s41569-020-0348-1.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zeng Z, et al. Survival benefit and toxicity profile of adjuvant icotinib for patients with EGFR mutation-positive non-small cell lung carcinoma: a retrospective study. Transl Lung Cancer Res. 2020;9:2401–10. https://doi.org/10.21037/tlcr-20-1214.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang X, Peng W, Zeng Z, Cai J, Liu A. Emerging a Novel VOPP1-EGFR Fusion Coexistent With T790M as an Acquired Resistance Mechanism to Prior Icotinib and Sensitive to Osimertinib in a Patient With EGFR L858R Lung Adenocarcinoma: A Case Report. Front Oncol. 2021;11: 720819. https://doi.org/10.3389/fonc.2021.720819.

Article  PubMed  PubMed Central  Google Scholar 

Zhang J, et al. Fatal interstitial lung disease associated with icotinib. J Thorac Dis. 2014;6:E267-271. https://doi.org/10.3978/j.issn.2072-1439.2014.10.24.

Article  PubMed  PubMed Central  Google Scholar 

Peng LY, et al. Icotinib Attenuates Monocrotaline-Induced Pulmonary Hypertension by Preventing Pulmonary Arterial Smooth Muscle Cell Dysfunction. Am J Hypertens. 2020; 33: 775–783. https://doi.org/10.1093/ajh/hpaa066. This paper explains the possible reasons why first-generation EGFR-TKI is less cardiotoxic than the second or third generations.

Wecker H, Waller CF. Afatinib. Recent Results Cancer Res. 2018;211:199–215. https://doi.org/10.1007/978-3-319-91442-8_14.

Article  CAS  PubMed  Google Scholar 

Waliany S, et al. Pharmacovigilance Analysis of Heart Failure Associated With Anti-HER2 Monotherapies and Combination Regimens for Cancer. JACC CardioOncol. 2023; 5: 85–98. https://doi.org/10.1016/j.jaccao.2022.09.007. It is suggested that egfrtkis of the second and third generations may induce cardiotoxicity by inhibiting the HER2 receptor.

Ramos GE, et al. Takotsubo cardiomyopathy Afatinib-related in a non-small cell lung cancer patient: Case report. Front Cardiovasc Med. 2022;9:1060813. https://doi.org/10.3389/fcvm.2022.1060813.

Article  PubMed  PubMed Central  Google Scholar 

Demircan NC, et al. QT interval prolongation related to afatinib treatment in a patient with metastatic non-small-cell lung cancer. Curr Probl Cancer. 2020;44: 100594. https://doi.org/10.1016/j.currproblcancer.2020.100594.

Article  PubMed  Google Scholar 

Tan W, Giri N, Quinn S, Wilner K, Parivar K. Evaluation of the potential effect of dacomitinib, an EGFR tyrosine kinase inhibitor, on ECG parameters in patients with advanced non-small cell lung cancer. Invest New Drugs. 2020;38:874–84. https://doi.org/10.1007/s10637-019-00887-0.

Article  PubMed  Google Scholar 

Anand K, Ensor J, Trachtenberg B, Bernicker EH. Osimertinib-Induced Cardiotoxicity: A Retrospective Review of the FDA Adverse Events Reporting System (FAERS). JACC CardioOncol. 2019;1:172–8. https://doi.org/10.1016/j.jaccao.2019.10.006.

Article  PubMed  PubMed Central  Google Scholar 

Kunimasa K, et al. Cardiac Adverse Events in EGFR-Mutated Non-Small Cell Lung Cancer Treated With Osimertinib. JACC CardioOncol. 2020;2:1–10. https://doi.org/10.1016/j.jaccao.2020.02.003.

Article  PubMed  PubMed Central  Google Scholar 

Patel SR, Brown SN, Kubusek JE, Mansfield AS, Duma N. Osimertinib-Induced Cardiomyopathy. JACC Case Rep. 2020;2:641–5. https://doi.org/10.1016/j.jaccas.2019.12.038.

Article  PubMed  PubMed Central  Google Scholar 

Shinomiya S, Kaira K, Yamaguchi O, Ishikawa K, Kagamu H. Osimertinib induced cardiomyopathy: A case report. Medicine (Baltimore). 2020;99:e22301. https://doi.org/10.1097/MD.0000000000022301.

Article  PubMed  PubMed Central  Google Scholar 

Soria JC, et al. Osimertinib in Untreated EGFR-Mutated Advanced Non-Small-Cell Lung Cancer. N Engl J Med. 2018;378:113–25. https://doi.org/10.1056/NEJMoa1713137.

Article  CAS  PubMed  Google Scholar 

Mok TS, et al. Osimertinib or Platinum-Pemetrexed in EGFR T790M-Positive Lung Cancer. N Engl J Med. 2017;376:629–40. https://doi.org/10.1056/NEJMoa1612674.

Article  CAS  PubMed  Google Scholar 

Watanabe H, et al. Congestive Heart Failure During Osimertinib Treatment for Epidermal Growth Factor Receptor (EGFR)-mutant Non-small Cell Lung Cancer (NSCLC). Intern Med. 2017;56:2195–7. https://doi.org/10.2169/internalmedicine.8344-16.

Article  PubMed  PubMed Central  Google Scholar 

Okuzumi S, Matsuda M, Nagao G, Kakimoto T, Minematsu N. Heart Failure With Reduced Ejection Fraction Caused by Osimertinib in a Patient With Lung Cancer: A Case Report and Literature Review. Cureus. 2022;14: e27694. https://doi.org/10.7759/cureus.27694.

Article  PubMed  PubMed Central  Google Scholar 

Kunimasa K. Is Osimertinib-Induced Cardiotoxicity Really Harmless? J Clin Oncol.

留言 (0)

沒有登入
gif