Diagnosing and treating anterior pituitary hormone deficiency in pediatric patients

Alatzoglou KS, Gregory LC, Dattani MT. Development of the Pituitary Gland. Compr Physiol. 2020;10:389–413. https://doi.org/10.1002/cphy.c150043.

Article  PubMed  Google Scholar 

Shields R, Mangla R, Almast J, Meyers S. Magnetic resonance imaging of sellar and juxtasellar abnormalities in the paediatric population: an imaging review. Insights Imaging. 2015. https://doi.org/10.1007/s13244-015-0401-5. 6:241 – 60.

Article  PubMed  PubMed Central  Google Scholar 

Larkin S, Ansorge O et al. Development and microscopic anatomy of the pituitary gland. In: Feingold KR, Anawalt B, Blackman MR, eds. Endotext (Internet). South Dartmouth (MA): MDText.com, Inc. 2017; PMID: 28402619.

Katugampola H, Cerbone M, Dattani M. Normal hypothalamic and Pituitary Development and Physiology in the Fetus and Neonate. In: Kovacs CS, Deal C, editors. Materna-fetal and neonatal endocrinology. London, U.K.: Elsevier; 2020. pp. 527–45.

Chapter  Google Scholar 

Schwanzel-Fukuda M, Pfaff DW. Origin of luteinizing hormone-releasing hormone neurons. Nature. 1989;338:161–4. https://doi.org/10.1038/338161a0.

Article  PubMed  Google Scholar 

Casoni F, Malone SA, Belle M, et al. Development of the neurons controlling fertility in humans: new insights from 3D imaging and transparent fetal brains. Development. 2016;143:3969–81. https://doi.org/10.1242/dev.139444.

Article  PubMed  Google Scholar 

Alvarez-Bolado G. Development of neuroendocrine neurons in the mammalian hypothalamus. Cell Tissue Res. 2019;375:23–39. https://doi.org/10.1007/s00441-018-2859-1.

Article  PubMed  Google Scholar 

Sykiotis GP, Pitteloud N, Seminara SB, Kaiser UB, Crowley WF. Jr. Deciphering genetic Disease in the genomic era: the model of GnRH deficiency. Sci Transl Med. 2010;2:32rv2. https://doi.org/10.1126/scitranslmed.3000288.

Article  PubMed  PubMed Central  Google Scholar 

Al Sayed Y, Howard SR. Panel testing for the molecular genetic diagnosis of congenital hypogonadotropic hypogonadism - a clinical perspective. Eur J Hum Genet. 2023. https://doi.org/10.1038/s41431-022-01261-0. 31:387 – 94.

Article  PubMed  Google Scholar 

Argente J, Perez-Jurado LA. Genetic causes of proportionate short stature. Best Pract Res Clin Endocrinol Metab. 2018;32:499–522. https://doi.org/10.1016/j.beem.2018.05.012.

Article  PubMed  Google Scholar 

Jee YH, Baron J. The Biology of Stature. J Pediatr. 2016. https://doi.org/10.1016/j.jpeds.2016.02.068. 173:32 – 8.

Polak M, Luton D. Fetal thyroidology. Best Pract Res Clin Endocrinol Metab. 2014;28:161–73. https://doi.org/10.1016/j.beem.2013.04.013.

Article  PubMed  Google Scholar 

Eng L, Lam L. Thyroid function during the fetal and neonatal periods. Neoreviews. 2020;21:e30–e6. https://doi.org/10.1542/neo.21-1-e30.

Article  PubMed  Google Scholar 

Vulsma T, Gons MH, de Vijlder JJ. Maternal-fetal transfer of thyroxine in congenital hypothyroidism due to a total organification defect or thyroid agenesis. N Engl J Med. 1989;321:13–6. https://doi.org/10.1056/NEJM198907063210103.

Article  PubMed  Google Scholar 

Baquedano MS, Belgorosky A. Human adrenal cortex: epigenetics and postnatal functional zonation. Horm Res Paediatr. 2018;89:331–40. https://doi.org/10.1159/000487995.

Article  PubMed  Google Scholar 

Lightman SL, Birnie MT, Conway-Campbell BL. Dynamics of ACTH and Cortisol Secretion and implications for Disease. Endocr Rev. 2020;41. https://doi.org/10.1210/endrev/bnaa002.

Grinspon RP, Bergadá I, Rey RA. Male Hypogonadism and disorders of Sex Development. Front Endocrinol (Lausanne). 2020;11:211. https://doi.org/10.3389/fendo.2020.00211.

Article  PubMed  Google Scholar 

Kuiri-Hänninen T, Sankilampi U, Dunkel L. Activation of the hypothalamic-pituitary-gonadal axis in infancy, minipuberty. Horm Res Paediatr. 2014;82:73–80. https://doi.org/10.1159/000362414.

Article  PubMed  Google Scholar 

Grinspon RP, Urrutia M, Rey RA. Male Central Hypogonadism in Paediatrics – the relevance of follicle-stimulating hormone and sertoli cell markers. Eur Endocrinol. 2018;14:67–71. https://doi.org/10.17925/EE.2018.14.2.67.

Article  PubMed  PubMed Central  Google Scholar 

Argente J, Dunkel L, Kaiser UB, et al. Molecular basis of normal and pathological puberty: from basic mechanisms to clinical implications. Lancet Diabetes Endocrinol. 2023. https://doi.org/10.1016/S2213-8587(22)00339-4. 11:203 – 16.

Article  PubMed  PubMed Central  Google Scholar 

Kuiri-Hänninen T, Dunkel L, Sankilampi U. Sexual dimorphism in postnatal gonadotrophin levels in infancy reflects diverse maturation of the ovarian and testicular hormone synthesis. Clin Endocrinol (Oxf). 2018;89:85–92. https://doi.org/10.1111/cen.13716.

Article  PubMed  Google Scholar 

Ljubicic ML, Madsen A, Upners EN, et al. Longitudinal evaluation of breast tissue in healthy infants: prevalence and relation to reproductive hormones and growth factors. Front Endocrinol (Lausanne). 2022;13:1048660. https://doi.org/10.3389/fendo.2022.1048660.

Article  PubMed  Google Scholar 

Gregory LC, Cionna C, Cerbone M, Dattani MT. Identification of genetic variants and phenotypic characterization of a large cohort of patients with congenital hypopituitarism and related disorders. Genet Med. 2023;25:100881. https://doi.org/10.1016/j.gim.2023.100881.

Article  PubMed  Google Scholar 

Jakobsen LK, Jensen RB, Birkebaek NH, et al. Diagnosis and incidence of congenital combined pituitary hormone Deficiency in Denmark-A National Observational Study. J Clin Endocrinol Metab. 2023;108:2475–85. https://doi.org/10.1210/clinem/dgad198.

Article  PubMed  PubMed Central  Google Scholar 

Zhu X, Gleiberman AS, Rosenfeld MG. Molecular physiology of pituitary development: signaling and transcriptional networks. Physiol Rev. 2007. https://doi.org/10.1152/physrev.00006.2006. 87:933 – 63.

Article  PubMed  Google Scholar 

Mortensen AH, MacDonald JW, Ghosh D, Camper SA. Candidate genes for panhypopituitarism identified by gene expression profiling. Physiol Genomics. 2011;43:1105–16. https://doi.org/10.1152/physiolgenomics.00080.2011.

Article  PubMed  PubMed Central  Google Scholar 

Clevers H. Wnt/beta-catenin signaling in development and disease. Cell. 2006. https://doi.org/10.1016/j.cell.2006.10.018. 127:469 – 80.

Youngblood JL, Coleman TF, Davis SW. Regulation of Pituitary Progenitor Differentiation by beta-Catenin. Endocrinology. 2018. https://doi.org/10.1210/en.2018-00563. 159:3287 – 305.

O’Rahilly S, Gray H, Humphreys PJ, et al. Brief report: impaired processing of prohormones associated with abnormalities of glucose homeostasis and adrenal function. N Engl J Med. 1995;333:1386–90. https://doi.org/10.1056/NEJM199511233332104.

Article  PubMed  Google Scholar 

Pépin L, Colin E, Tessarech M, et al. A New Case of PCSK1 pathogenic variant with congenital Proprotein Convertase 1/3 Deficiency and Literature Review. J Clin Endocrinol Metab. 2019;104:985–93. https://doi.org/10.1210/jc.2018-01854.

Article  PubMed  Google Scholar 

Tauber M, Hoybye C. Endocrine Disorders in Prader-Willi syndrome: a model to understand and treat hypothalamic dysfunction. Lancet Diabetes Endocrinol. 2021. https://doi.org/10.1016/S2213-8587(21)00002-4. 9:235 – 46.

Article  PubMed  Google Scholar 

Patel L, McNally RJ, Harrison E, Lloyd IC, Clayton PE. Geographical distribution of optic nerve hypoplasia and septo-optic dysplasia in Northwest England. J Pediatr. 2006;148:85–8. https://doi.org/10.1016/j.jpeds.2005.07.031.

Article  PubMed  Google Scholar 

Olson LE, Tollkuhn J, Scafoglio C, et al. Homeodomain-mediated beta-catenin-dependent switching events dictate cell-lineage determination. Cell. 2006;125:593–605. https://doi.org/10.1016/j.cell.2006.02.046.

Article  PubMed  Google Scholar 

Pérez Millán MI, Vishnopolska SA, Daly AZ, et al. Next generation sequencing panel based on single molecule molecular inversion probes for detecting genetic variants in children with hypopituitarism. Mol Genet Genomic Med. 2018. https://doi.org/10.1002/mgg3.395.

Article  PubMed  PubMed Central  Google Scholar 

Bosch IAL, Katugampola H, Dattani MT. Congenital hypopituitarism during the neonatal period: Epidemiology, Pathogenesis, Therapeutic options, and Outcome. Front Pediatr. 2021;8:600962. https://doi.org/10.3389/fped.2020.600962.

Article  Google Scholar 

Garcia M, Barrio R, Garcia-Lavandeira M, et al. The syndrome of central hypothyroidism and macroorchidism: IGSF1 controls TRHR and FSHB expression by differential modulation of pituitary TGFbeta and activin pathways. Sci Rep. 2017;7:42937. https://doi.org/10.1038/srep42937.

Article  PubMed  PubMed Central  Google Scholar 

Fourneaux R, Reynaud R, Mougel G, et al. IGSF1 mutations are the most frequent genetic aetiology of thyrotropin deficiency. Eur J Endocrinol. 2022;187:787–95. https://doi.org/10.1530/EJE-22-0520.

Article  PubMed  Google Scholar 

Joustra SD, Heinen CA, Schoenmakers N, et al. IGSF1 Deficiency: lessons from an extensive Case Series and recommendations for Clinical Management. J Clin Endocrinol Metab. 2016;101:1627–36. https://doi.org/10.1210/jc.2015-3880.

Article  PubMed  PubMed Central  Google Scholar 

Ohba K, Sasaki S, Matsushita A, et al. GATA2 mediates thyrotropin-releasing hormone-induced transcriptional activation of the thyrotropin beta gene. PLoS ONE. 2011;6:e18667. https://doi.org/10.1371/journal.pone.0018667.

Article  PubMed  PubMed Central  Google Scholar 

Lo A, Zheng W, Gong Y, Crochet JR, Halvorson LM. GATA transcription factors regulate LHbeta gene expression. J Mol Endocrinol. 2011;47:45–58. https://doi.org/10.1530/JME-10-0137.

Article  PubMed  Google Scholar 

Zhao L, Bakke M, Krimkevich Y, et al. Steroidogenic factor 1 (SF1) is essential for pituitary gonadotrope function. Development. 2001;128:147–54.

Article 

留言 (0)

沒有登入
gif