New insights on diagnosis and treatment of AVP deficiency

Robertson GL. Diabetes insipidus. Endocrinol Metab Clin North Am. 1995;24(3):549–72. (In eng).

Article  CAS  PubMed  Google Scholar 

Land H, Schütz G, Schmale H, Richter D. Nucleotide sequence of cloned cDNA encoding bovine arginine vasopressin-neurophysin II precursor. Nature. 1982;295(5847):299–303. https://doi.org/10.1038/295299a0. (In eng).

Article  CAS  PubMed  Google Scholar 

Levy B, Chauvet MT, Chauvet J, Acher R. Ontogeny of bovine neurohypophysial hormone precursors. II. Foetal copeptin, the third domain of the vasopressin precursor. Int J Pept Protein Res. 1986;27(3):320–4. (In eng).

Article  CAS  PubMed  Google Scholar 

Fenske W, Refardt J, Chifu I, et al. A copeptin-based Approach in the diagnosis of Diabetes insipidus. N Engl J Med. 2018;379(5):428–39.

Article  CAS  PubMed  Google Scholar 

Winzeler B, Cesana-Nigro N, Refardt J, et al. Arginine-stimulated copeptin measurements in the differential diagnosis of Diabetes insipidus: a prospective diagnostic study. Lancet. 2019;394(10198):587–95.

Article  CAS  PubMed  Google Scholar 

Atila C, Gaisl O, Vogt DR, Werlen L, Szinnai G, Christ-Crain M. Glucagon-stimulated copeptin measurements in the differential diagnosis of Diabetes insipidus: a double-blind, randomized, placebo-controlled study. Eur J Endocrinol. 2022;187(1):65–74. https://doi.org/10.1530/eje-22-0033. (In eng).

Article  CAS  PubMed  Google Scholar 

Prentice M. Time for change: renaming Diabetes insipidus to improve patient safety. Clin Endocrinol (Oxf). 2018;88(5):625–6. https://doi.org/10.1111/cen.13578. (In eng).

Article  PubMed  Google Scholar 

Atila C, Loughrey PB, Garrahy A, et al. Central Diabetes insipidus from a patient’s perspective: management, psychological co-morbidities, and renaming of the condition: results from an international web-based survey. Lancet Diabetes Endocrinol. 2022;10(10):700–9. https://doi.org/10.1016/s2213-8587(22)00219-4. (In eng).

Article  PubMed  Google Scholar 

Arima H, Cheetham T, Christ-Crain M, et al. Changing the name of Diabetes insipidus: a position statement of the Working Group for Renaming Diabetes Insipidus. Eur J Endocrinol. 2022;187(5):P1–p3. https://doi.org/10.1530/eje-22-0751. (In eng).

Article  CAS  PubMed  Google Scholar 

Babey M, Kopp P, Robertson GL. Familial forms of Diabetes insipidus: clinical and molecular characteristics. Nat Rev Endocrinol. 2011;7(12):701–14. https://doi.org/10.1038/nrendo.2011.100. (In eng).

Article  CAS  PubMed  Google Scholar 

Fujiwara TM, Bichet DG. Molecular biology of hereditary Diabetes insipidus. J Am Soc Nephrol. 2005;16(10):2836–46. https://doi.org/10.1681/asn.2005040371. (In eng).

Article  CAS  PubMed  Google Scholar 

Miller M, Dalakos T, Moses AM, Fellerman H, Streeten DH. Recognition of partial defects in antidiuretic hormone secretion. Ann Intern Med. 1970;73(5):721–9. https://doi.org/10.7326/0003-4819-73-5-721. (In eng).

Article  CAS  PubMed  Google Scholar 

Rivier C, Vale W. Modulation of stress-induced ACTH release by corticotropin-releasing factor, catecholamines and vasopressin. Nature. 1983;305(5932):325–7. https://doi.org/10.1038/305325a0. (In eng).

Article  CAS  PubMed  Google Scholar 

Gillies GE, Linton EA, Lowry PJ. Corticotropin releasing activity of the new CRF is potentiated several times by vasopressin. Nature. 1982;299(5881):355–7. https://doi.org/10.1038/299355a0. (In eng).

Article  CAS  PubMed  Google Scholar 

Nagy G, Mulchahey JJ, Smyth DG, Neill JD. The glycopeptide moiety of vasopressin-neurophysin precursor is neurohypophysial prolactin releasing factor. Biochem Biophys Res Commun. 1988;151(1):524–9. https://doi.org/10.1016/0006-291x(88)90625-0. (In eng).

Article  CAS  PubMed  Google Scholar 

Hyde JF, Ben-Jonathan N. The posterior pituitary contains a potent prolactin-releasing factor: in vivo studies. Endocrinology. 1989;125(2):736–41. https://doi.org/10.1210/endo-125-2-736. (In eng).

Article  CAS  PubMed  Google Scholar 

Barat C, Simpson L, Breslow E. Properties of human vasopressin precursor constructs: inefficient monomer folding in the absence of copeptin as a potential contributor to Diabetes insipidus. Biochemistry. 2004;43(25):8191–203. https://doi.org/10.1021/bi0400094. (In eng).

Article  CAS  PubMed  Google Scholar 

Wun T. Vasopressin and platelets: a concise review. Platelets. 1997;8(1):15–22. https://doi.org/10.1080/09537109777492. (In eng).

Article  CAS  PubMed  Google Scholar 

Preibisz JJ, Sealey JE, Laragh JH, Cody RJ, Weksler BB. Plasma and platelet vasopressin in Essential Hypertension and Congestive Heart Failure. Hypertension. 1983;5(2 Pt 2):I129–38. https://doi.org/10.1161/01.hyp.5.2_pt_2.i129. (In eng).

Article  CAS  PubMed  Google Scholar 

Jane Ellis M, Livesey JH, Evans MJ. Hormone stability in human whole blood. Clin Biochem. 2003;36(2):109–12. https://doi.org/10.1016/s0009-9120(02)00440-x. (In eng).

Article  CAS  PubMed  Google Scholar 

Baumann G, Dingman JF. Distribution, blood transport, and degradation of antidiuretic hormone in man. J Clin Invest. 1976;57(5):1109–16. https://doi.org/10.1172/jci108377. (In eng).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Morgenthaler NG, Struck J, Alonso C, Bergmann A. Assay for the measurement of copeptin, a stable peptide derived from the precursor of vasopressin. Clin Chem. 2006;52(1):112–9. https://doi.org/10.1373/clinchem.2005.060038. (In eng).

Article  CAS  PubMed  Google Scholar 

Balanescu S, Kopp P, Gaskill MB, Morgenthaler NG, Schindler C, Rutishauser J. Correlation of plasma copeptin and vasopressin concentrations in hypo-, iso-, and Hyperosmolar States. J Clin Endocrinol Metab. 2011;96(4):1046–52. https://doi.org/10.1210/jc.2010-2499. (In eng).

Article  CAS  PubMed  Google Scholar 

Fenske WK, Schnyder I, Koch G, et al. Release and decay kinetics of Copeptin vs AVP in response to osmotic alterations in healthy volunteers. J Clin Endocrinol Metab. 2018;103(2):505–13. https://doi.org/10.1210/jc.2017-01891. (In eng).

Article  PubMed  Google Scholar 

Bhandari SS, Loke I, Davies JE, Squire IB, Struck J, Ng LL. Gender and renal function influence plasma levels of copeptin in healthy individuals. Clin Sci (Lond). 2009;116(3):257–63. https://doi.org/10.1042/cs20080140. (In eng).

Article  CAS  PubMed  Google Scholar 

Darzy KH, Dixit KC, Shalet SM, Morgenthaler NG, Brabant G. Circadian secretion pattern of copeptin, the C-terminal vasopressin precursor fragment. Clin Chem. 2010;56(7):1190–1. https://doi.org/10.1373/clinchem.2009.141689. (In eng).

Article  CAS  PubMed  Google Scholar 

Beglinger S, Drewe J, Christ-Crain M. The circadian rhythm of Copeptin, the C-Terminal portion of Arginine Vasopressin. J Biomark. 2017;2017:4737082. https://doi.org/10.1155/2017/4737082. (In eng).

Article  CAS  PubMed Central  Google Scholar 

Walti C, Siegenthaler J, Christ-Crain M. Copeptin levels are Independent of ingested nutrient type after standardised meal administration–the CoMEAL study. Biomarkers. 2014;19(7):557–62. https://doi.org/10.3109/1354750x.2014.940504. (In eng).

Article  CAS  PubMed  Google Scholar 

Blum CA, Mirza U, Christ-Crain M, Mueller B, Schindler C, Puder JJ. Copeptin levels remain unchanged during the menstrual cycle. PLoS ONE. 2014;9(5):e98240. https://doi.org/10.1371/journal.pone.0098240. (In eng).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sailer CO, Winzeler B, Nigro N, et al. Characteristics and outcomes of patients with profound hyponatraemia due to primary polydipsia. Clin Endocrinol (Oxf). 2017;87(5):492–9. https://doi.org/10.1111/cen.13384. (In eng).

Article  CAS  PubMed  Google Scholar 

Arslan A, Karaarslan E, Dinçer A. High intensity signal of the posterior pituitary. A study with horizontal direction of frequency-encoding and fat suppression MR techniques. Acta Radiol. 1999;40(2):142–5. https://doi.org/10.3109/02841859909177729. (In eng).

Article  CAS  PubMed  Google Scholar 

Moses AM, Clayton B, Hochhauser L. Use of T1-weighted MR imaging to differentiate between primary polydipsia and central Diabetes insipidus. AJNR Am J Neuroradiol. 1992;13(5):1273–7. (In eng).

CAS  PubMed  PubMed Central  Google Scholar 

Côté M, Salzman KL, Sorour M, Couldwell WT. Normal dimensions of the posterior pituitary bright spot on magnetic resonance imaging. J Neurosurg. 2014;120(2):357–62. https://doi.org/10.3171/2013.11.Jns131320. (In eng).

Article  PubMed  Google Scholar 

Maghnie M, Cosi G, Genovese E, et al. Central Diabetes insipidus in children and young adults. N Engl J Med. 2000;343(14):998–1007. https://doi.org/10.1056/NEJM200010053431403. (In eng).

Article  CAS 

留言 (0)

沒有登入
gif