Diabetes Mellitus to Accelerated Atherosclerosis: Shared Cellular and Molecular Mechanisms in Glucose and Lipid Metabolism

American Diabetes A. 2. Classification and diagnosis of diabetes: standards of medical care in diabetes-2021. Diabetes Care. 2021;44(Suppl 1):S15-S33.https://doi.org/10.2337/dc21-S002.

Group TS, Bjornstad P, Drews KL, Caprio S, Gubitosi-Klug R, Nathan DM, et al. Long-term complications in youth-onset type 2 diabetes. N Engl J Med. 2021;385(5):416–26. https://doi.org/10.1056/NEJMoa2100165.

Article  Google Scholar 

Ordovas JM. Genetic links between diabetes mellitus and coronary atherosclerosis. Curr Atheroscler Rep. 2007;9(3):204–10. https://doi.org/10.1007/s11883-007-0020-9.

Article  CAS  PubMed  Google Scholar 

Ross S, Gerstein H, Pare G. The genetic link between diabetes and atherosclerosis. Can J Cardiol. 2018;34(5):565–74. https://doi.org/10.1016/j.cjca.2018.01.016.

Article  PubMed  Google Scholar 

La Sala L, Prattichizzo F, Ceriello A. The link between diabetes and atherosclerosis. Eur J Prev Cardiol. 2019;26(2 suppl):15–24. https://doi.org/10.1177/2047487319878373.

Article  PubMed  Google Scholar 

Low Wang CC, Hess CN, Hiatt WR, Goldfine AB. Clinical update: cardiovascular disease in diabetes mellitus: atherosclerotic cardiovascular disease and heart failure in type 2 diabetes mellitus - mechanisms, management, and clinical considerations. Circulation. 2016;133(24):2459–502. https://doi.org/10.1161/CIRCULATIONAHA.116.022194.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liu Z, Ma X, Ilyas I, Zheng X, Luo S, Little PJ, et al. Impact of sodium glucose cotransporter 2 (SGLT2) inhibitors on atherosclerosis: from pharmacology to pre-clinical and clinical therapeutics. Theranostics. 2021;11(9):4502–15. https://doi.org/10.7150/thno.54498.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chang W, Zhu F, Zheng H, Zhou Z, Miao P, Zhao L, et al. Glucagon-like peptide-1 receptor agonist dulaglutide prevents ox-LDL-induced adhesion of monocytes to human endothelial cells: an implication in the treatment of atherosclerosis. Mol Immunol. 2019;116:73–9. https://doi.org/10.1016/j.molimm.2019.09.021.

Article  CAS  PubMed  Google Scholar 

D’Onofrio N, Sardu C, Trotta MC, Scisciola L, Turriziani F, Ferraraccio F, et al. Sodium-glucose co-transporter2 expression and inflammatory activity in diabetic atherosclerotic plaques: effects of sodium-glucose co-transporter2 inhibitor treatment. Mol Metab. 2021;54:101337. https://doi.org/10.1016/j.molmet.2021.101337.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kang Y, Zhan F, He M, Liu Z, Song X. Anti-inflammatory effects of sodium-glucose co-transporter 2 inhibitors on atherosclerosis. Vascul Pharmacol. 2020;133–134:106779. https://doi.org/10.1016/j.vph.2020.106779.

Article  CAS  PubMed  Google Scholar 

Ganbaatar B, Fukuda D, Shinohara M, Yagi S, Kusunose K, Yamada H, et al. Empagliflozin ameliorates endothelial dysfunction and suppresses atherogenesis in diabetic apolipoprotein E-deficient mice. Eur J Pharmacol. 2020;875:173040. https://doi.org/10.1016/j.ejphar.2020.173040.

Article  CAS  PubMed  Google Scholar 

Liu Y, Xu J, Wu M, Xu B, Kang L. Empagliflozin protects against atherosclerosis progression by modulating lipid profiles and sympathetic activity. Lipids Health Dis. 2021;20(1):5. https://doi.org/10.1186/s12944-021-01430-y.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chen YC, Jandeleit-Dahm K, Peter K. Sodium-glucose co-transporter 2 (SGLT2) inhibitor dapagliflozin stabilizes diabetes-induced atherosclerotic plaque instability. J Am Heart Assoc. 2022;11(1):e022761. https://doi.org/10.1161/JAHA.121.022761.

Article  PubMed  Google Scholar 

Xu S, Ilyas I, Little PJ, Li H, Kamato D, Zheng X, et al. Endothelial dysfunction in atherosclerotic cardiovascular diseases and beyond: from mechanism to pharmacotherapies. Pharmacol Rev. 2021;73(3):924–67. https://doi.org/10.1124/pharmrev.120.000096.

Article  CAS  PubMed  Google Scholar 

Kruger-Genge A, Blocki A, Franke RP, Jung F. Vascular endothelial cell biology: an update. Int J Mol Sci. 2019;20(18).https://doi.org/10.3390/ijms20184411

Bebu I, Braffett BH, Orchard TJ, Lorenzi GM, Lachin JM, Group DER. Mediation of the effect of glycemia on the risk of CVD outcomes in type 1 diabetes: the DCCT/EDIC study. Diabetes Care. 2019;42(7):1284–9. https://doi.org/10.2337/dc18-1613.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rossello X, Raposeiras-Roubin S, Oliva B, Sanchez-Cabo F, Garcia-Ruiz JM, Caimari F, et al. Glycated hemoglobin and subclinical atherosclerosis in people without diabetes. J Am Coll Cardiol. 2021;77(22):2777–91. https://doi.org/10.1016/j.jacc.2021.03.335.

Article  PubMed  Google Scholar 

Rooney MR, Tang O, Pankow JS, Selvin E. Glycaemic markers and all-cause mortality in older adults with and without diabetes: the atherosclerosis risk in communities (ARIC) study. Diabetologia. 2021;64(2):339–48. https://doi.org/10.1007/s00125-020-05285-3.

Article  CAS  PubMed  Google Scholar 

Clyne AM. Endothelial response to glucose: dysfunction, metabolism, and transport. Biochem Soc Trans. 2021;49(1):313–25. https://doi.org/10.1042/BST20200611.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cole JB, Florez JC. Genetics of diabetes mellitus and diabetes complications. Nat Rev Nephrol. 2020;16(7):377–90. https://doi.org/10.1038/s41581-020-0278-5.

Article  PubMed  PubMed Central  Google Scholar 

Khalid M, Petroianu G, Adem A. Advanced glycation end products and diabetes mellitus: mechanisms and perspectives. Biomolecules. 2022;12(4).https://doi.org/10.3390/biom12040542.

Indyk D, Bronowicka-Szydelko A, Gamian A, Kuzan A. Advanced glycation end products and their receptors in serum of patients with type 2 diabetes. Sci Rep. 2021;11(1):13264. https://doi.org/10.1038/s41598-021-92630-0.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Banarjee R, Sharma A, Bai S, Deshmukh A, Kulkarni M. Proteomic study of endothelial dysfunction induced by AGEs and its possible role in diabetic cardiovascular complications. J Proteomics. 2018;187:69–79. https://doi.org/10.1016/j.jprot.2018.06.009.

Article  CAS  PubMed  Google Scholar 

Catan A, Turpin C, Diotel N, Patche J, Guerin-Dubourg A, Debussche X, et al. Aging and glycation promote erythrocyte phagocytosis by human endothelial cells: potential impact in atherothrombosis under diabetic conditions. Atherosclerosis. 2019;291:87–98. https://doi.org/10.1016/j.atherosclerosis.2019.10.015.

Article  CAS  PubMed  Google Scholar 

Tsukahara R, Haniu H, Matsuda Y, Tsukahara T. The AGP-PPARgamma axis promotes oxidative stress and diabetic endothelial cell dysfunction. Mol Cell Endocrinol. 2018;473:100–13. https://doi.org/10.1016/j.mce.2018.01.008.

Article  CAS  PubMed  Google Scholar 

Deng X, Huang W, Peng J, Zhu TT, Sun XL, Zhou XY, et al. Irisin alleviates advanced glycation end products-induced inflammation and endothelial dysfunction via inhibiting ROS-NLRP3 inflammasome signaling. Inflammation. 2018;41(1):260–75. https://doi.org/10.1007/s10753-017-0685-3.

Article  CAS  PubMed  Google Scholar 

Ren X, Ren L, Wei Q, Shao H, Chen L, Liu N. Advanced glycation end-products decreases expression of endothelial nitric oxide synthase through oxidative stress in human coronary artery endothelial cells. Cardiovasc Diabetol. 2017;16(1):52. https://doi.org/10.1186/s12933-017-0531-9.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rajaraman B, Ramadas N, Krishnasamy S, Ravi V, Pathak A, Devasena CS, et al. Hyperglycaemia cause vascular inflammation through advanced glycation end products/early growth response-1 axis in gestational diabetes mellitus. Mol Cell Biochem. 2019;456(1–2):179–90. https://doi.org/10.1007/s11010-019-03503-0.

Article  CAS  PubMed  Google Scholar 

Ninomiya H, Katakami N, Sato I, Osawa S, Yamamoto Y, Takahara M, et al. Association between subclinical atherosclerosis markers and the level of accumulated advanced glycation end-products in the skin of patients with diabetes. J Atheroscler Thromb. 2018;25(12):1274–84. https://doi.org/10.5551/jat.44859.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Do MH, Lee JH, Ahn J, Hong MJ, Kim J, Kim SY. Isosamidin from Peucedanum japonicum roots prevents methylglyoxal-induced glucotoxicity in human umbilical vein endothelial cells via suppression of ROS-mediated Bax/Bcl-2. Antioxidants (Basel). 2020;9(6).https://doi.org/10.3390/antiox9060531.

Johnson LL, Johnson J, Ober R, Holland A, Zhang G, Backer M, et al. Novel receptor for advanced glycation end products-blocking antibody to treat diabetic peripheral artery disease. J Am Heart Assoc. 2021;10(1):e016696. https://doi.org/10.1161/JAHA.120.016696.

Article  CAS  PubMed  Google Scholar 

Shao M, Yu M, Zhao J, Mei J, Pan Y, Zhang J, et al. miR-21-3p regulates AGE/RAGE signalling and improves diabetic atherosclerosis. Cell Biochem Funct. 2020;38(7):965–75. https://doi.org/10.1002/cbf.3523.

Article  CAS  PubMed  Google Scholar 

Barbu E, Popescu MR, Popescu AC, Balanescu SM. Inflammation as a precursor of atherothrombosis, diabetes and early vascular aging. Int J Mol Sci. 2022;23(2).https://doi.org/10.3390/ijms23020963.

Tanti JF, Ceppo F, Jager J, Berthou F. Implication of inflammatory signaling pathways in obesity-induced insulin resistance. Front Endocrinol (Lausanne). 2012;3:181. https://doi.org/10.3389/fendo.2012.00181.

Article  PubMed  Google Scholar 

Grebe A, Hoss F, Latz E. NLRP3 inflammasome and the IL-1 pathway in atherosclerosis. Circ Res. 2018;122(12):1722–40. https://doi.org/10.1161/CIRCRESAHA.118.311362.

Article  CAS  PubMed  Google Scholar 

Boni-Schnetzler M, Meier DT. Islet inflammation in type 2 diabetes. Semin Immunopathol. 2019;41(4):501–13. https://doi.org/1

留言 (0)

沒有登入
gif