CAV1 Protein Encapsulated in Mouse BMSC-Derived Extracellular Vesicles Alleviates Myocardial Fibrosis Following Myocardial Infarction by Blocking the TGF-β1/SMAD2/c-JUN Axis

Chiang MH, Liang CJ, Lin LC, Yang YF, Huang CC, Chen YH, et al. miR-26a attenuates cardiac apoptosis and fibrosis by targeting ataxia-telangiectasia mutated in myocardial infarction. J Cell Physiol. 2020;235:6085–102. https://doi.org/10.1002/jcp.29537.

Article  CAS  PubMed  Google Scholar 

Zhao Z, Du S, Shen S, Wang L. microRNA-132 inhibits cardiomyocyte apoptosis and myocardial remodeling in myocardial infarction by targeting IL-1beta. J Cell Physiol. 2020;235:2710–21. https://doi.org/10.1002/jcp.29175.

Article  CAS  PubMed  Google Scholar 

Golforoush P, Yellon DM, Davidson SM. Mouse models of atherosclerosis and their suitability for the study of myocardial infarction. Basic Res Cardiol. 2020;115:73. https://doi.org/10.1007/s00395-020-00829-5.

Article  PubMed  PubMed Central  Google Scholar 

Daseke MJ 2nd, Tenkorang MAA, Chalise U, Konfrst SR, Lindsey ML. Cardiac fibroblast activation during myocardial infarction wound healing: fibroblast polarization after MI. Matrix Biol. 2020;91-92:109–16. https://doi.org/10.1016/j.matbio.2020.03.010.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kurose H. Cardiac Fibrosis and Fibroblasts. Cells. 2021;10 https://doi.org/10.3390/cells10071716.

Prabhu SD, Frangogiannis NG. The biological basis for cardiac repair after myocardial infarction: from inflammation to fibrosis. Circ Res. 2016;119:91–112. https://doi.org/10.1161/CIRCRESAHA.116.303577.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Miao C, Lei M, Hu W, Han S, Wang Q. A brief review: the therapeutic potential of bone marrow mesenchymal stem cells in myocardial infarction. Stem Cell Res Ther. 2017;8:242. https://doi.org/10.1186/s13287-017-0697-9.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Woith E, Fuhrmann G, Melzig MF. Extracellular vesicles-connecting kingdoms. Int J Mol Sci. 2019;20 https://doi.org/10.3390/ijms20225695.

Bian S, Zhang L, Duan L, Wang X, Min Y, Yu H. Extracellular vesicles derived from human bone marrow mesenchymal stem cells promote angiogenesis in a rat myocardial infarction model. J Mol Med (Berl). 2014;92:387–97. https://doi.org/10.1007/s00109-013-1110-5.

Article  CAS  PubMed  Google Scholar 

Keshtkar S, Azarpira N, Ghahremani MH. Mesenchymal stem cell-derived extracellular vesicles: novel frontiers in regenerative medicine. Stem Cell Res Ther. 2018;9:63. https://doi.org/10.1186/s13287-018-0791-7.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lin CJ, Yun EJ, Lo UG, Tai YL, Deng S, Hernandez E, et al. The paracrine induction of prostate cancer progression by caveolin-1. Cell Death Dis. 2019;10:834. https://doi.org/10.1038/s41419-019-2066-3.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gvaramia D, Blaauboer ME, Hanemaaijer R, Everts V. Role of caveolin-1 in fibrotic diseases. Matrix Biol. 2013;32:307–15. https://doi.org/10.1016/j.matbio.2013.03.005.

Article  CAS  PubMed  Google Scholar 

Shivshankar P, Halade GV, Calhoun C, Escobar GP, Mehr AJ, Jimenez F, et al. Caveolin-1 deletion exacerbates cardiac interstitial fibrosis by promoting M2 macrophage activation in mice after myocardial infarction. J Mol Cell Cardiol. 2014;76:84–93. https://doi.org/10.1016/j.yjmcc.2014.07.020.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lu J, Zhang J, Wang Y, Sun Q. Caveolin-1 scaffolding domain peptides alleviate liver fibrosis by inhibiting TGF-beta1/Smad signaling in mice. Int J Mol Sci. 2018;19 https://doi.org/10.3390/ijms19061729.

Lu M, Qin Q, Yao J, Sun L, Qin X. Induction of LOX by TGF-beta1/Smad/AP-1 signaling aggravates rat myocardial fibrosis and heart failure. IUBMB Life. 2019;71:1729–39. https://doi.org/10.1002/iub.2112.

Article  CAS  PubMed  Google Scholar 

Qiu H, Liu W, Lan T, Pan W, Chen X, Wu H, et al. Salvianolate reduces atrial fibrillation through suppressing atrial interstitial fibrosis by inhibiting TGF-beta1/Smad2/3 and TXNIP/NLRP3 inflammasome signaling pathways in post-MI rats. Phytomedicine. 2018;51:255–65. https://doi.org/10.1016/j.phymed.2018.09.238.

Article  CAS  PubMed  Google Scholar 

Barrett T, Wilhite SE, Ledoux P, Evangelista C, Kim IF, Tomashevsky M, et al. NCBI GEO: archive for functional genomics data sets--update. Nucleic Acids Res. 2013;41:D991–5. https://doi.org/10.1093/nar/gks1193.

Article  CAS  PubMed  Google Scholar 

Keerthikumar S, Chisanga D, Ariyaratne D, Al Saffar H, Anand S, Zhao K, et al. ExoCarta: a web-based compendium of exosomal cargo. J Mol Biol. 2016;428:688–92. https://doi.org/10.1016/j.jmb.2015.09.019.

Article  CAS  PubMed  Google Scholar 

Yang H, Robinson PN, Wang K. Phenolyzer: phenotype-based prioritization of candidate genes for human diseases. Nat Methods. 2015;12:841–3. https://doi.org/10.1038/nmeth.3484.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Szklarczyk D, Gable AL, Lyon D, Junge A, Wyder S, Huerta-Cepas J, et al. STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 2019;47:D607–D13. https://doi.org/10.1093/nar/gky1131.

Article  CAS  PubMed  Google Scholar 

Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13:2498–504. https://doi.org/10.1101/gr.1239303.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhou G, Soufan O, Ewald J, Hancock REW, Basu N, Xia J. NetworkAnalyst 3.0: a visual analytics platform for comprehensive gene expression profiling and meta-analysis. Nucleic Acids Res. 2019;47:W234–W41. https://doi.org/10.1093/nar/gkz240.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chen B, Luo L, Wei X, Gong D, Li Z, Li S, et al. M1 Bone marrow-derived macrophage-derived extracellular vesicles inhibit angiogenesis and myocardial regeneration following myocardial infarction via the MALAT1/MicroRNA-25-3p/CDC42 Axis. Oxid Med Cell Longev. 2021;2021:9959746. https://doi.org/10.1155/2021/9959746.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhu LP, Tian T, Wang JY, He JN, Chen T, Pan M, et al. Hypoxia-elicited mesenchymal stem cell-derived exosomes facilitates cardiac repair through miR-125b-mediated prevention of cell death in myocardial infarction. Theranostics. 2018;8:6163–77. https://doi.org/10.7150/thno.28021.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wu Y, Peng W, Fang M, Wu M, Wu M. MSCs-derived extracellular vesicles carrying miR-212-5p alleviate myocardial infarction-induced cardiac fibrosis via NLRC5/VEGF/TGF-beta1/SMAD Axis. J Cardiovasc Transl Res. 2022;15:302–16. https://doi.org/10.1007/s12265-021-10156-2.

Article  PubMed  Google Scholar 

Gao W, Shao R, Zhang X, Liu D, Liu Y, Fa X. Up-regulation of caveolin-1 by DJ-1 attenuates rat pulmonary arterial hypertension by inhibiting TGFbeta/Smad signaling pathway. Exp Cell Res. 2017;361:192–8. https://doi.org/10.1016/j.yexcr.2017.10.019.

Article  CAS  PubMed  Google Scholar 

Han M, Gu Y, Lu P, Li J, Cao H, Li X, et al. Exosome-mediated lncRNA AFAP1-AS1 promotes trastuzumab resistance through binding with AUF1 and activating ERBB2 translation. Mol Cancer. 2020;19:26. https://doi.org/10.1186/s12943-020-1145-5.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hinkelbein J, Bohm L, Braunecker S, Adler C, De Robertis E, Cirillo F. Decreased tissue COX5B expression and mitochondrial dysfunction during sepsis-induced kidney injury in rats. Oxid Med Cell Longev. 2017;2017:8498510. https://doi.org/10.1155/2017/8498510.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yu SY, Dong B, Fang ZF, Hu XQ, Tang L, Zhou SH. Knockdown of lncRNA AK139328 alleviates myocardial ischaemia/reperfusion injury in diabetic mice via modulating miR-204-3p and inhibiting autophagy. J Cell Mol Med. 2018;22:4886–98. https://doi.org/10.1111/jcmm.13754.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Borger V, Bremer M, Ferrer-Tur R, Gockeln L, Stambouli O, Becic A, et al. Mesenchymal stem/stromal cell-derived extracellular vesicles and their potential as novel immunomodulatory therapeutic agents. Int J Mol Sci. 2017;18 https://doi.org/10.3390/ijms18071450.

Han C, Zhou J, Liang C, Liu B, Pan X, Zhang Y, et al. Human umbilical cord mesenchymal stem cell derived exosomes encapsulated in functional peptide hydrogels promote cardiac repair. Biomater Sci. 2019;7:2920–33. https://doi.org/10.1039/c9bm00101h.

Article  CAS  PubMed  Google Scholar 

Zhao Y, Sun X, Cao W, Ma J, Sun L, Qian H, et al. Exosomes derived from human umbilical cord mesenchymal stem cells relieve acute myocardial ischemic injury. Stem Cells Int. 2015;2015:761643. https://doi.org/10.1155/2015/761643.

Article  PubMed  PubMed Central  Google Scholar 

Sundqvist A, Vasilaki E, Voytyuk O, Bai Y, Morikawa M, Moustakas A, et al. TGFbeta and EGF signaling orchestrates the AP-1- and p63 transcriptional regulation of breast cancer invasiveness. Oncogene. 2020;39:4436–49. https://doi.org/10.1038/s41388-020-1299-z.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sposito AC, de Lima-Junior JC, Moura FA, Barreto J, Bonilha I, Santana M, et al. Reciprocal multifaceted interaction between HDL (high-density lipoprotein) and myocardial infarction. Arterioscler Thromb Vasc Biol. 2019;39:1550–64.

留言 (0)

沒有登入
gif