Non-Coding RNA-Mediated Gene Regulation in Cardiovascular Disorders: Current Insights and Future Directions

Poller W, Dimmeler S, Heymans S, Zeller T, Haas J, Karakas M, et al. Non-coding RNAs in cardiovascular diseases: Diagnostic and therapeutic perspectives. Eur Heart J. 2018;39(29):2704. https://doi.org/10.1093/EURHEARTJ/EHX165.

Article  CAS  PubMed  Google Scholar 

Zhu L, Li N, Sun L, Zheng D, Shao G. Non-coding RNAs: The key detectors and regulators in cardiovascular disease. Genomics. 2021;113(1):1233–46. https://doi.org/10.1016/J.YGENO.2020.10.024.

Article  CAS  PubMed  Google Scholar 

Shi Y, Zhang H, Huang S, Yin L, Wang F, Luo P, Huang H. Epigenetic regulation in cardiovascular disease: Mechanisms and advances in clinical trials. Sig Transduct Target Ther. 2022;7(1) https://doi.org/10.1038/S41392-022-01055-2.

Yang Y, Meng WJ, Wang ZQ. MicroRNAs (miRNAs): Novel potential therapeutic targets in colorectal cancer. Front Oncol. 2022;12:1054846. https://doi.org/10.3389/FONC.2022.1054846/BIBTEX.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ruiz-Arroyo VM, Nam Y. Dynamic Protein-RNA recognition in primary microRNA processing. Curr Opin Struct Biol. 2022;76:102442. https://doi.org/10.1016/J.SBI.2022.102442.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Varzideh F, Kansakar U, Donkor K, Wilson S, Jankauskas SS, Mone P, et al. Cardiac remodeling after myocardial infarction: Functional contribution of microRNAs to inflammation and fibrosis. Front Cardiovasc Med. 2022;9:863238. https://doi.org/10.3389/FCVM.2022.863238/BIBTEX.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Meng L, Lin H, Huang X, Weng J, Peng F, Wu S. METTL14 suppresses pyroptosis and diabetic cardiomyopathy by downregulating TINCR lncRNA. Cell Death Dis. 2022;13(1) https://doi.org/10.1038/S41419-021-04484-Z.

Feng H, Wang S, Wang Y, Ni X, Yang Z, Hu X, Yang S. LncCat: An ORF attention model to identify LncRNA based on ensemble learning strategy and fused sequence information. Comput Struct Biotechnol J. 2023;21:1433–47. https://doi.org/10.1016/J.CSBJ.2023.02.012.

Article  CAS  PubMed  PubMed Central  Google Scholar 

St. Laurent G, Wahlestedt C, Kapranov P. The landscape of long non-coding RNA classification. Trends in genetics : TIG. 2015;31(5):239. https://doi.org/10.1016/J.TIG.2015.03.007.

Article  CAS  PubMed  Google Scholar 

Adalsteinsson BT, Ferguson-Smith AC. Epigenetic control of the genome—lessons from genomic imprinting. Genes. 2014;5(3):635. https://doi.org/10.3390/GENES5030635.

Article  PubMed  PubMed Central  Google Scholar 

Howell CY, Bestor TH, Ding F, Latham KE, Mertineit C, Trasler JM, Chaillet JR. Genomic imprinting disrupted by a maternal effect mutation in the Dnmt1 gene. Cell. 2001;104(6):829–38. https://doi.org/10.1016/S0092-8674(01)00280-X.

Article  CAS  PubMed  Google Scholar 

Liu CX, Chen LL. Circular RNAs: Characterization, cellular roles, and applications. Cell. 2022;185(12):2016–34. https://doi.org/10.1016/J.CELL.2022.04.021.

Article  CAS  PubMed  Google Scholar 

Misir S, Wu N, Yang BB. Specific expression and functions of circular RNAs. Cell Death Differ. 2022;29(3):481. https://doi.org/10.1038/S41418-022-00948-7.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kim YK. Circular RNAs as a promising biomarker for heart disease. Biomed Pharmacother. 2022;156:113935. https://doi.org/10.1016/J.BIOPHA.2022.113935.

Article  CAS  PubMed  Google Scholar 

Long Q, Lv B, Jiang S, Lin J. The landscape of circular RNAs in cardiovascular diseases. Int J Mol Sci. 2023;24:4571. https://doi.org/10.3390/IJMS24054571.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yang Z, Xu F, Teschendorff AE, Zhao Y, Yao L, Li J, He Y. Insights into the role of long non-coding RNAs in DNA methylation mediated transcriptional regulation. Front Mol Biosci. 2022;9 https://doi.org/10.3389/FMOLB.2022.1067406.

Xie S, Wang Z, Okano M, Nogami M, Li Y, He WW, et al. Cloning, expression and chromosome locations of the human DNMT3 gene family. Gene. 1999;236(1):87–95. https://doi.org/10.1016/S0378-1119(99)00252-8.

Article  CAS  PubMed  Google Scholar 

Nan X, Meehan RR, Bird A. Dissection of the methyl-CpG binding domain from the chromosomal protein MeCP2. Nucleic Acids Res. 1993;21(21):4886–92. https://doi.org/10.1093/NAR/21.21.4886.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hendrich B, Bird A. Identification and characterization of a family of mammalian methyl-CpG binding proteins. Mol Cell Biol. 1998;18(11):6538–47. https://doi.org/10.1128/MCB.18.11.6538.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Achour M, Jacq X, Rondé P, Alhosin M, Charlot C, Chataigneau T, et al. The interaction of the SRA domain of ICBP90 with a novel domain of DNMT1 is involved in the regulation of VEGF gene expression. Oncogene. 2008;27(15):2187–97. https://doi.org/10.1038/SJ.ONC.1210855.

Article  CAS  PubMed  Google Scholar 

Filion GJP, Zhenilo S, Salozhin S, Yamada D, Prokhortchouk E, Defossez P-A. A family of human zinc finger proteins that bind methylated DNA and repress transcription. Mol Cell Biol. 2006;26(1):169–81. https://doi.org/10.1128/MCB.26.1.169-181.2006.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gujral P, Mahajan V, Lissaman AC, Ponnampalam AP. Histone acetylation and the role of histone deacetylases in normal cyclic endometrium. Reprod Biol Endocrinol. 2020;18(1):1–11. https://doi.org/10.1186/S12958-020-00637-5/FIGURES/3.

Article  Google Scholar 

Seto E, Yoshida M. Erasers of histone acetylation: The histone deacetylase enzymes. Cold Spring Harb Perspect Biol. 2014;6(4) https://doi.org/10.1101/CSHPERSPECT.A018713.

Yang M, Zhang Y, Ren J. Acetylation in cardiovascular diseases: Molecular mechanisms and clinical implications. Biochim Biophys Acta Mol basis Dis. 2020;1866(10) https://doi.org/10.1016/J.BBADIS.2020.165836.

Funamoto M, Imanishi M, Tsuchiya K, Ikeda Y. Roles of histone acetylation sites in cardiac hypertrophy and heart failure. Front Cardiovasc Med. 2023;10:1133611. https://doi.org/10.3389/FCVM.2023.1133611/BIBTEX.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Husmann D, Gozani O. Histone lysine methyltransferases in biology and disease. Nat Struct Mol Biol. 2019;26(10):880. https://doi.org/10.1038/S41594-019-0298-7.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hsu CL, Lo YC, Kao CF. H3K4 Methylation in aging and metabolism. Epigenomes. 2021;5:14. https://doi.org/10.3390/EPIGENOMES5020014.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pan MR, Hsu MC, Chen LT, Hung WC. Orchestration of H3K27 methylation: Mechanisms and therapeutic implication. Cell Mol Life Sci. 2018;75(2):209. https://doi.org/10.1007/S00018-017-2596-8.

Article  CAS  PubMed  Google Scholar 

Spicuglia S, Vanhille L. Chromatin signatures of active enhancers. Nucleus. 2012;3(2):126. https://doi.org/10.4161/NUCL.19232.

Article  PubMed  PubMed Central  Google Scholar 

Nicetto D, Zaret KS. Role of H3K9me3 heterochromatin in cell identity establishment and maintenance. Curr Opin Genet Dev. 2019;55:1. https://doi.org/10.1016/J.GDE.2019.04.013.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rea S, Eisenhaber F, O’Carroll D, Strahl BD, Sun ZW, Schmid M, et al. Regulation of chromatin structure by site-specific histone H3 methyltransferases. Nature. 2000;406(6796):593–9. https://doi.org/10.1038/35020506.

Article  CAS  PubMed  Google Scholar 

Taufiqul Arif KM, Elliot EK, Haupt LM, Griffiths LR. Regulatory mechanisms of epigenetic mirna relationships in human cancer and potential as therapeutic targets. Cancers. 2020;12(10):1–26. https://doi.org/10.3390/CANCERS12102922.

Article  Google Scholar 

Wehbe N, Nasser SA, Pintus G, Badran A, Eid AH, Baydoun E. MicroRNAs in cardiac hypertrophy. Int J Mol Sci. 2019;20(19) https://doi.org/10.3390/IJMS20194714.

Statello L, Guo CJ, Chen LL, Huarte M. Gene regulation by long non-coding RNAs and its biological functions. Nat Rev Mol Cell Biol. 2020;22(2):96–118. https://doi.org/10.1038/s41580-020-00315-9.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Martianov I, Ramadass A, Serra Barros A, Chow N, Akoulitchev A. Repression of the human dihydrofolate reductase gene by a non-coding interfering transcript. Nature. 2007;445(7128):666–70. https://doi.org/10.1038/NATURE05519.

Article  CAS  PubMed  Google Scholar 

Huarte M, Guttman M, Feldser D, Garber M, Koziol MJ, Kenzelmann-Broz D, et al. A large intergenic non-coding RNA induced by p53 mediates global gene repression in the p53 response. Cell. 2010;142(3):409. https://doi.org/10.1016/J.CELL.2010.06.040.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bond AM, Vangompel MJW, Sametsky EA, Clark MF, Savage JC, Disterhoft JF, Kohtz JD. Balanced gene regulation by an embryonic brain non-coding RNA is critical for GABA circuitry in adult hippocampus. Nat Neurosci. 2009;12(8):1020.

留言 (0)

沒有登入
gif