Upregulation of brain-derived neurotrophic factor by Shiikuwasha (Citrus depressa Hayata)

O’Keane V, Frodl T, Dinan TG. A review of atypical depression in relation to the course of depression and changes in HPA axis organization. Psychoneuroendocrinology. 2012;37:1589–99.

PubMed  Google Scholar 

Greenberg PE, Fournier AA, Sisitsky T, Pike CT, Kessler RC. The economic burden of adults with major depressive disorder in the United States (2005 and 2010). J Clin Psychiatry. 2015;76:155–62.

PubMed  Google Scholar 

Papakostas GI, Fava M, Thase ME. Treatment of SSRI-resistant depression: a meta-analysis comparing within- versus across-class switches. Biol Psychiatry. 2008;63:699–704.

CAS  PubMed  Google Scholar 

Covington HE III, Vialou V, Nestler EJ. From synapse to nucleus: Novel targets for treating depression. Neuropharmacology. 2010;58:683–93.

CAS  PubMed  Google Scholar 

Barde YA, Edgar D, Thoenen H. Purification of a new neurotrophic factor from mammalian brain. EMBO J. 1982;1:549–53.

CAS  PubMed  PubMed Central  Google Scholar 

Mattson MP, Maudsley S, Martin B. BDNF and 5-HT: A dynamic duo in age-related neuronal plasticity and neurodegenerative disorders. Trends Neurosci. 2004;27:589–94.

CAS  PubMed  Google Scholar 

Zhao H, Alam A, San CY, Eguchi S, Chen Q, Lian Q, et al. Molecular mechanisms of brain-derived neurotrophic factor in neuro-protection: recent developments. Brain Res. 2017;1665:1–21.

CAS  PubMed  Google Scholar 

Finkbeiner S, Tavazoie SF, Maloratsky A, Jacobs KM, Harris KM, Greenberg ME. CREB: a major mediator of neuronal neurotrophin responses. Neuron. 1997;19:1031–47.

CAS  PubMed  Google Scholar 

Lonze BE, Ginty DD. Function and regulation of CREB family transcription factors in the nervous system. Neuron. 2002;35:605–23.

CAS  PubMed  Google Scholar 

Yamamoto KK, Gonzalez GA, Biggs WH III, Montminy MR. Phosphorylation-induced binding and transcriptional efficacy of nuclear factor CREB. Nature. 1988;334:494–8.

CAS  PubMed  Google Scholar 

Gonzalez GA, Montminy MR. Cyclic AMP stimulates somatostatin gene transcription by phosphorylation of CREB at serine 133. Cell. 1989;59:675–80.

CAS  PubMed  Google Scholar 

Liu SH, Lai YL, Chen BL, Yang FY. Ultrasound enhances the expression of brain-derived neurotrophic factor in astrocyte through activation of TrkB-Akt and calcium-CaMK signaling pathways. Cereb Cortex. 2017;27:3152–60.

PubMed  Google Scholar 

Duman RS, Monteggia LM. A neurotrophic model for stress-related mood disorders. Biol Psychiatry. 2006;59:1116–27.

CAS  PubMed  Google Scholar 

Duman RS, Heninger GR, Nestler EJ. A molecular and cellular theory of depression. Arch Gen Psychiatry. 1997;54:597–606.

CAS  PubMed  Google Scholar 

Guilloux JP, Douillard-Guilloux G, Kota R, Wang X, Gardier AM, Martinowich K, et al. Molecular evidence for BDNF- and GABA-related dysfunctions in the amygdala of female subjects with major depression. Mol Psychiatry. 2012;17:1130–42.

CAS  PubMed  Google Scholar 

Li S, Wang C, Wang M, Li W, Matsumoto K, Tang Y. Antidepressant like effects of piperine in chronic mild stress treated mice and its possible mechanisms. Life Sci. 2007;80:1373–81.

CAS  PubMed  Google Scholar 

Lee B, Shim I, Lee H, Hahm DH. Fucoidan prevents depression-like behavior in rats exposed to repeated restraint stress. J Nat Med. 2013;67:534–44.

CAS  PubMed  Google Scholar 

Li YC, Wang LL, Pei YY, Shen JD, Li HB, Wang BY, et al. Baicalin decreases SGK1 expression in the hippocampus and reverses depressive-like behaviors induced by corticosterone. Neuroscience. 2015;311:130–7.

CAS  PubMed  Google Scholar 

Thakare VN, Aswar MK, Kulkarni YP, Patil RR, Patel BM. Silymarin ameliorates experimentally induced depressive like behavior in rats: Involvement of hippocampal BDNF signaling, inflammatory cytokines and oxidative stress response. Physiol Behav. 2017;179:401–10.

CAS  PubMed  Google Scholar 

Cao K, Shen C, Yuan Y, Bai S, Yang L, Guo L, et al. SiNiSan ameliorates the depression-like behavior of rats that experienced maternal separation through 5-HT1A receptor/CREB/BDNF pathway. Front Psychiatry. 2019;10:160.

PubMed  PubMed Central  Google Scholar 

Shirayama Y, Chen AC, Nakagawa S, Russell DS, Duman RS. Brain-derived neurotrophic factor produces antidepressant effects in behavioral models of depression. J Neurosci. 2002;22:3251–61.

CAS  PubMed  PubMed Central  Google Scholar 

Hoshaw BA, Malberg JE, Lucki I. Central administration of IGF-I and BDNF leads to long-lasting antidepressant-like effects. Brain Res. 2005;1037:204–8.

CAS  PubMed  Google Scholar 

Hofer M, Pagliusi SR, Hohn A, Leibrock J, Barde YA. Regional distribution of brain-derived neurotrophic factor mRNA in the adult mouse brain. EMBO J. 1990;9:2459–64.

CAS  PubMed  PubMed Central  Google Scholar 

Yan Q, Rosenfeld RD, Matheson CR, Hawkins N, Lopez OT, Bennett L, et al. Expression of brain-derived neurotrophic factor protein in the adult rat central nervous system. Neuroscience. 1997;78:431–48.

CAS  PubMed  Google Scholar 

Matthews VB, Åström MB, Chan MH, Bruce CR, Krabbe KS, Prelovsek O, et al. Brain-derived neurotrophic factor is produced by skeletal muscle cells in response to contraction and enhances fat oxidation via activation of AMP-activated protein kinase. Diabetologia. 2009;52:1409–18.

CAS  PubMed  Google Scholar 

Ernfors P, Wetmore C, Olson L, Persson H. Identification of cells in rat brain and peripheral tissues expressing mRNA for members of the nerve growth factor family. Neuron. 1990;5:511–26.

CAS  PubMed  Google Scholar 

Maisonpierre PC, Le Beau MM, Espinosa R III, Ip NY, Belluscio L, de la Monte SM, et al. Human and rat brain-derived neurotrophic factor and Neurotrophin-3: Gene structures, distributions, and chromosomal localizations. Genomics. 1991;10:558–68.

CAS  PubMed  Google Scholar 

Katoh-Semba R, Takeuchi IK, Semba R, Kato K. Distribution of brain-derived neurotrophic factor in rats and its changes with development in the brain. J Neurochem. 1997;69:34–42.

CAS  PubMed  Google Scholar 

Lommatzsch M, Braun A, Mannsfeldt A, Botchkarev VA, Botchkareva NV, Paus R, et al. Abundant production of brain-derived neurotrophic factor by adult visceral epithelia. Implications for paracrine and target-derived neurotrophic functions. Am J Pathol. 1999;155:1183–93.

CAS  PubMed  PubMed Central  Google Scholar 

Endlich N, Lange T, Kuhn J, Klemm P, Kotb AM, Siegerist F, et al. BDNF: mRNA expression in urine cells of patients with chronic kidney disease and its role in kidney function. J Cell Mol Med. 2018;22:5265–77.

CAS  PubMed  PubMed Central  Google Scholar 

Pan W, Banks WA, Fasold MB, Bluth J, Kastin AJ. Transport of brain-derived neurotrophic factor across the blood–brain barrier. Neuropharmacology. 1998;37:1553–61.

CAS  PubMed  Google Scholar 

Sartorius A, Hellweg R, Litzke J, Vogt M, Dormann C, Vollmayr B, et al. Correlations and discrepancies between serum and brain tissue levels of neurotrophins after electroconvulsive treatment in rats. Pharmacopsychiatry. 2009;42:270–6.

CAS  PubMed  Google Scholar 

Klein AB, Williamson R, Santini MA, Clemmensen C, Ettrup A, Rios M, et al. Blood BDNF concentrations reflect brain-tissue BDNF levels across species. Int J Neuropsychopharmacol. 2011;14:347–53.

CAS  PubMed  Google Scholar 

Schmidt HD, Duman RS. Peripheral BDNF produces antidepressant-like effects in cellular and behavioral models. Neuropsychopharmacology. 2010;35:2378–91.

CAS  PubMed  PubMed Central  Google Scholar 

Nakajima K, Oiso S, Kariyazono H. Brain-derived neurotrophic factor up-regulation by the methanol extract of foxtail millet in human peripheral cells. J Nutr Sci Vitaminol. 2020;66:284–8.

CAS  PubMed  Google Scholar 

Nakajima K, Okubo S, Oiso S. Identification of traditional Japanese Kampo medicines and crude drugs that upregulate brain derived neurotrophic factor in human peripheral cells. Acta Neurobiol Exp. 2021;81:393–404.

Google Scholar 

Nakajima K, Tomohiro H, Oiso S. Red foxtail millet upregulates brain-derived neurotrophic factor levels in vitro and in vivo. Biomed Res. 2023;44:97–104.

CAS  PubMed  Google Scholar 

Nakajima K, Okubo S, Oiso S. Increasing effect of Citrus natsudaidai on brain-derived neurotrophic factor. J Oleo Sci. 2023;72:245–55.

CAS  PubMed  Google Scholar 

Asikin Y, Kawahira S, Goki M, Hirose N, Kyoda S, Wada K. Extended aroma extract dilution analysis profile of shiikuwasha (Citrus depressa Hayata) pulp essential oil. J Food Drug Anal. 2018;26:268–76.

CAS  PubMed  Google Scholar 

Sakata Y, Okamoto T, Oshio K, Nakamura H, Iwamoto H, Namba K, et al. Dietary supplementation with shiikuwasha extract attenuates dexamethasone-induced skeletal muscle atrophy in aged rats. Springerplus. 2016;5:816.

PubMed  PubMed Central  Google Scholar 

Yen YW, Lai YJ, Kong ZL. Dietary supplements of shiikuwasha extract attenuates osteoarthritis progression in meniscal/ligamentous injury and obese rats. Nutrients. 2019;11:1312.

CAS  PubMed  PubMed Central  Google Scholar 

Uto T, Morinaga O, Tanaka H, Shoyama Y. Analysis of the synergistic effect of glycyrrhizin and other constituents in licorice extract on lipopolysaccharide-induced nitric oxide production using knock-out extract. Biochem Biophys Res Commun. 2012;417:473–8.

CAS  PubMed  Google Scholar 

Nogata Y, Sakamoto K, Shiratsuchi H, Ishii T, Yano M, Ohta H. Flavonoid composition of fruit tissues of Citrus species. Biosci Biotechnol Biochem. 2006;70:178–92.

CAS 

留言 (0)

沒有登入
gif