Ethylmethylhydroxypyridine Succinate Limits Stress-Induced Neuroinflammation in the Cerebral Cortex of Old Rats

Franceschi C., Campisi J. 2014. Chronic inflammation (inflammaging) and its potential contribution to age-associated diseases. J. Gerontol. A Biol. Sci. Med. Sci. 69 (S1), S4–S9.

Article  PubMed  Google Scholar 

Thompson M.E., Fox S.A., Berghanel A., Sabbi K.H., Phillips-Garcia S., Enigk D.K., Otali E., Machanda Z.P., Wrangham R.W., Muller M.N. 2020. Wild chimpanzees exhibit humanlike aging of glucocorticoid regulation. Proc. Natl. Acad. Sci. USA. 117 (15), 8424–8430.

Article  CAS  Google Scholar 

Canet G., Chevallier N., Zussy C., Desrumaux C., Givalois L. 2018. Central role of glucocorticoid receptors in Alzheimer’s disease and depression. Front. Neurosci. 12, 739.

Article  PubMed  PubMed Central  Google Scholar 

Choi G.E., Han H.J. 2021. Glucocorticoid impairs mitochondrial quality control in neurons. Neurobiol. Dis. 152, 105301.

Article  CAS  PubMed  Google Scholar 

Logie J.J., Ali S., Marshall K.M., Heck M.M.S., Walker B.R., Hadoke P.W.F. 2010. Glucocorticoid-mediated inhibition of angiogenic changes in human endothelial cells is not caused by reductions in cell proliferation or migration. PLoS One. 5 (12), e14476.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tse Y.C., Bagot R.C., Wong T.P. 2012. Dynamic regulation of NMDAR function in the adult brain by the stress hormone corticosterone. Front. Cell. Neurosci. 6 (9), 1–14.

Article  Google Scholar 

Sugama S., Kakinuma Y. 2020. Stress and brain immunity: microglial homeostasis through hypothalamus-pituitary-adrenal gland axis and sympathetic nervous system. Brain Behav. Immun. Health. 7, 100111.

Article  PubMed  PubMed Central  Google Scholar 

Saito K., Cui H. 2018. Emerging roles of estrogen-related receptors in the brain: Potential interactions with estrogen signaling. Int. J. Mol. Sci. 19 (4), 1091.

Article  PubMed  PubMed Central  Google Scholar 

Arbo B.D., Schimith L.E., Santos M.G., Hort M.A. 2022. Repositioning and development of new treatments for neurodegenerative diseases: Focus on neuroinflammation. Eur. J. Pharmacol. 919, 174800.

Article  CAS  PubMed  Google Scholar 

Grygiel-Gorniak B. 2014. Peroxisome proliferator-activated receptors and their ligands: Nutritional and clinical implications – a review. Nutr. J. 13 (1), 17.

Article  PubMed  PubMed Central  Google Scholar 

Perretti M., Leroy X., Bland E.J., Montero-Melendez T. 2015. Resolution pharmacology: Opportunities for therapeutic innovation in inflammation. Trends Pharmacol. Sci. 36 (11), 737–755.

Article  CAS  PubMed  Google Scholar 

Krzak G., Willis C.M., Smith J.A., Pluchino S., Peruzzotti-Jametti L. 2021. Succinate receptor 1: An emerging regulator of myeloid cell function in inflammation. Trends Immunol. 42 (1), 45–58.

Article  CAS  PubMed  Google Scholar 

Lukyanova L.D., Kirova Y.I. 2015. Mitochondria-controlled signalling mechanisms of brain protection in hypoxia. Front. Neurosci. 9, 320.

Article  PubMed  PubMed Central  Google Scholar 

Trauelsen M., Hiron T.K., Lin D., Petersen J.E., Breton B., Husted A.S. 2021. Extracellular succinate hyperpolarizes M2 macrophages through SUCNR1/GPR91-mediated Gq signaling. Cell Rep. 35 (11), 109246.

Article  CAS  PubMed  Google Scholar 

Harber K.J., Goede K.E., Verberk S.G.S., Meinster E., Vries H.E., Weeghel M., Winther M.P.J., Bossche J.V. 2020. Succinate is an inflammation-induced immunoregulatory metabolite in macrophages. Metabolites. 10 (9), 372.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hamel D., Sanchez M., Duhamel F., Roy O., Honore J.C., Noueihed B., Zhou T., Nadeau-Vallee M., Hou X., Lavoie J.C., Mitchell G., Mamer O.A., Chemtob S. 2014. G-protein–coupled receptor 91 and succinate are key contributors in neonatal postcerebral hypoxia-ischemia recovery. Arterioscler. Thromb. Vasc. Biol. 34 (2), 285–293.

Article  CAS  PubMed  Google Scholar 

Kirova Yu.I., Shakova F.M., Germanova E.L., Romanova G.A., Voronina T.A. 2020. The efect of Mexidol on cerebral mitochondriogenesis at a young age and during aging. Zh. Nevr. Psikhiatr. im. S.S. Koraskova (Rus.). 120 (1), 62–69.

Google Scholar 

Cherif H., Duhame F., Cecyre B., Bouchard A., Quintal A., Chemtob S., Bouchard J.F. 2018. Receptors of intermediates of carbohydrate metabolism, GPR91 and GPR99, mediate axon growth. PLoS Biol. 16 (5), e2003619.

Article  PubMed  PubMed Central  Google Scholar 

Jin Y., Zhang S.S. 1980. The inhibitory effect of succinic acid on the central nervous system. Yao Xue Xue Bao. 15 (12), 761–763.

CAS  PubMed  Google Scholar 

Yue W., Liu Y.X., Zang D.L., Zhou M., Zhang F., Wang L. 2002. Inhibitory effects of succinic acid on chemical kindling and amygdale electrical kindling in rats. Acta Pharmacol. Sin. 23 (9), 847–850.

PubMed  Google Scholar 

Chen S.W., Xin Q., Kong W.X., Min L., Li J.F. 2003. Anxiolytic-like effect of succinic acid in mice. Life Sci. 73 (25), 3257–3264.

Article  CAS  PubMed  Google Scholar 

Kirova Y.I., Shakova F.M., Voronina T.A. 2021. Ethylmethylhydroxypyridine succinate induces anti-inflammatory polarization of microglia in the brain of aging rat. Biochem. Cell Biol. 15 (4), 356–364.

CAS  Google Scholar 

Kirova Yu.I., Terekhina O.L., Shakova F.M. 2022. Morpho-functional features of astrocytes and microglia in the brain of ageing rats during the course of ethylmethylhydroxypyridine succinate treatment. Pat. Fiziol. Exp. Ter. (Rus.). 66 (1), 4–16.

Google Scholar 

Atrooz F., Alkadhi K.A., Salim S. 2021. Understanding stress: Insights from rodent models. Curr. Res. Neurobiol. 2, 100013.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Baghirova S., Hughes B.G., Hendzel M.J., Schulz R. 2015. Sequential fractionation and isolation of subcellular proteins from tissue or cultured cells. Methods X. 2, 440–445.

Google Scholar 

Niraula A., Sheridan J.F., Godbout J.P. 2017. Microglia priming with aging and stress. Neuropsychopharmacology. 42 (1), 318–333.

Article  PubMed  Google Scholar 

Bereshchenko O., Bruscoli S., Riccardi C. 2018. Glucocorticoids, sex hormones, and immunity. Front. Immunol. 9, 1332.

Article  PubMed  PubMed Central  Google Scholar 

Madalena K.M., Lerch J.K. 2017. The effect of glucocorticoid and glucocorticoid receptor interactions on brain, spinal cord, and glial cell plasticity. Neural. Plast. 2017, 8640970.

Article  PubMed  PubMed Central  Google Scholar 

Eisele P.S., Salatino S., Sobek J., Hottiger M.O., Handschin C. 2013. The peroxisome proliferator-activated receptor γ coactivator 1α/β (PGC-1) coactivators repress the transcriptional activity of NF-κB in skeletal muscle cells. J. Biol. Chem. 288 (4), 2246–2260.

Article  CAS  PubMed  Google Scholar 

Singh B.K., Sinha R.A., Tripathi M., Mendoza A., Ohba K., Sy J.A.C., Xie S.Y., Zhou J., Ho J.P., Chang C.Y., Wu Y., Giguère V., Bay B.H., Vanacker J.M., Ghosh S., Gauthier K., Hollenberg A.N., McDonnell D.P., Yen P.M. 2018. Thyroid hormone receptor and ERRα coordinately regulate mitochondrial fission, mitophagy, biogenesis, and function. Sci. Signal. 11 (536), eaam5855.

Rius-Perez S., Torres-Cuevas I., Millan I., Ortega A.L., Perez S. 2020. PGC-1α, inflammation, and oxidative stress: An integrative view in metabolism. Oxid. Med. Cell. Longev. 2020, 1452696.

Article  PubMed  PubMed Central  Google Scholar 

Chen T.T., Maevsky E.I., Uchitel M.L. 2015. Maintenance of homeostasis in the aging hypothalamus: The central and peripheral roles of succinate. Front. Endocrinol. 6, 7.

Article  Google Scholar 

Abe N., Nishihara T., Yorozuya T., Tanaka J. 2020. Microglia and macrophages in the pathological central and peripheral nervous systems. Cells. 9 (9), 2132.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Daskalakis N.P., Meijer O.C., Kloet E.R. 2022. Mineralocorticoid receptor and glucocorticoid receptor work alone and together in cell-type-specific manner: Implications for resilience prediction and targeted therapy. Neurobiol. Stress. 18, 100455.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Nicola A.F., Meyer M., Guennoun R., Schumacher M., Hunt H., Belanoff J., Kloet E.R., Deniselle M.C.G. 2020. Insights into the therapeutic potential of glucocorticoid receptor modulators for neurodegenerative diseases. Int. J. Mol. Sci. 21 (6), 2137.

Article  PubMed  PubMed Central  Google Scholar 

Bao A.M., Fischer D.F., Wu Y.H., Hol E.M., Balesar R., Unmehopa U.A., Zhou J.N., Swaab D.F. 2006. A direct androgenic involvement in the expression of human corticotropin-releasing hormone. Mol. Psychiatry. 11 (6), 567–576.

Article  CAS  PubMed  Google Scholar 

Bianchi V.E., Rizzi L., Bresciani E., Omeljaniuk R., Torsello A. 2020. Androgen therapy in neurodegenerative diseases. J. Endocr. Soc. 4 (11), bvaa120.

Dostert A., Heinzel T. 2004. Negative glucocorticoid receptor response elements and their role in glucocorticoid action. Curr. Pharm. Des. 10 (23), 2807–2816.

Article  CAS  PubMed  Google Scholar 

Kamal R.M., Noorden M.S., Franzek E., Dijkstra B.A.G., Loonen A.J.M., De Jong C.A.J. 2016. The Neurobiological mechanisms of gamma-hydroxybutyrate dependence and withdrawal and their clinical relevance: A review. Neuropsychobiology. 73 (2), 65–80.

Article  CAS  PubMed  Google Scholar 

留言 (0)

沒有登入
gif