Association between protein undernutrition and diabetes: Molecular implications in the reduction of insulin secretion

Sobotka L, Forbes A. Basics in clinical nutrition. Galen, Prague. 2019. ISBN 978-80-7492-427-9.

Wells JC, Sawaya AL, Wibaek R, et al. The double burden of malnutrition: aetiological pathways and consequences for health. Lancet. 2020;395(10217):75–88. https://doi.org/10.1016/S0140-6736(19)32472-9.

Article  PubMed  Google Scholar 

Boah M, Azupogo F, Amporfro DA, Abada LA. The epidemiology of undernutrition and its determinants in children under five years in Ghana. PLoS ONE. 2019;14(7):1–23. https://doi.org/10.1371/journal.pone.0219665.

Article  CAS  Google Scholar 

WHO. Obesity and overweight. World Heal Organ. Published online 2020. https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight. Accessed on 15 Apr 2023.

Headey D, Heidkamp R, Osendarp S, et al. Impacts of COVID-19 on childhood malnutrition and nutrition-related mortality. Lancet. 2020;396(10250):519–21. https://doi.org/10.1016/S0140-6736(20)31647-0.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zemrani B, Gehri M, Masserey E, Knob C, Pellaton R. A hidden side of the COVID-19 pandemic in children: the double burden of undernutrition and overnutrition. Int J Equity Health. 2021;20(1):1–4. https://doi.org/10.1186/s12939-021-01390-w.

Article  Google Scholar 

Littlejohn P, Finlay BB. When a pandemic and an epidemic collide: COVID-19, gut microbiota, and the double burden of malnutrition. BMC Med. 2021;19(1):1–8. https://doi.org/10.1186/s12916-021-01910-z.

Article  CAS  Google Scholar 

Roseboom TJ. Epidemiological evidence for the developmental origins of health and disease: Effects of prenatal undernutrition in humans. J Endocrinol. 2019;242(1):T135–44. https://doi.org/10.1530/JOE-18-0683.

Article  CAS  PubMed  Google Scholar 

Bautista CJ, Bautista RJ, Montaño S, et al. Effects of maternal protein restriction during pregnancy and lactation on milk composition and offspring development. Br J Nutr. 2019;122(2):141–51. https://doi.org/10.1017/S0007114519001120.

Article  CAS  PubMed  Google Scholar 

Forrester TE, Badaloo AV, Boyne MS, et al. Prenatal factors contribute to the emergence of kwashiorkor or marasmus in severe undernutrition: Evidence for the predictive adaptation model. PLoS ONE. 2012;7(4):8–11. https://doi.org/10.1371/journal.pone.0035907.

Article  CAS  Google Scholar 

Vaag AA, Grunnet LG, Arora GP, Brøns C. The thrifty phenotype hypothesis revisited. Diabetologia. 2012;55(8):2085–8. https://doi.org/10.1007/s00125-012-2589-y.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hales CN, Barker DJP. Type 2 (non-insulin-dependent) diabetes mellitus: the thrifty phenotype hypothesis. Int J Epidemiol. 2013;42(5):1215–22. https://doi.org/10.1093/ije/dyt133.

Article  CAS  PubMed  Google Scholar 

Nikolaus Cassandra, Luciana HE, Anna Z-K, Ka SI. Risk of food insecurity in youg adulthood and logitudinal change in cardiometabolic Health: Evidence from the National Longitudinal Study of Adolescent to Adult Health. J Nutr. Published online. 2022. https://doi.org/10.1093/jn/nxac0055.

Dos Reis Araujo T, Muniz MRR, Alves BL, Dos Santos LMB, Bonfim MF, da Silva Junior JA, Vettorazzi JF, Zoppi CC, Carneiro EM. Tauroursodeoxycholic acid improves glucose tolerance and reduces adiposity in normal protein and malnourished mice fed a high-fat diet. Food Res Int. 2022 Jun;156:111331. https://doi.org/10.1016/j.foodres.2022.111331. Epub 2022 May 6. PMID: 35651081.

Dalvi PS, Yang S, Swain N, et al. Long-term metabolic effects of malnutrition: Liver steatosis and insulin resistance following early-life protein restriction. PLoS ONE. 2018;13(7):1–22. https://doi.org/10.1371/journal.pone.0199916.

Article  CAS  Google Scholar 

Cappelli APG, Zoppi CC, Silveira LR, et al. Reduced glucose-induced insulin secretion in low-protein-fed rats is associated with altered pancreatic islets redox status. J Cell Physiol. 2018;233(1):486–96. https://doi.org/10.1002/jcp.25908.

Article  CAS  PubMed  Google Scholar 

Vaiserman A, Lushchak O. Prenatal malnutrition-induced epigenetic dysregulation as a risk factor for type 2 diabetes. Int J Genomics. 2019;2019. https://doi.org/10.1155/2019/3821409.

Filteau S, Praygod G, Rehman AM, et al. Prior undernutrition and insulin production several years later in Tanzanian adults. Am J Clin Nutr. 2021;113(6):1600–8. https://doi.org/10.1093/ajcn/nqaa438.

Article  PubMed  PubMed Central  Google Scholar 

Delghingaro-Augusto V, Ferreira F, Bordin S, et al. A low protein diet alters gene expression in rat pancreatic islets. J Nutr. 2004;134(2):321–7. https://doi.org/10.1093/jn/134.2.321.

Article  CAS  PubMed  Google Scholar 

De Rooij SR, Painter RC, Phillips DIW, et al. Impaired insulin secretion after prenatal exposure to the Dutch famine. Diabetes Care. 2006;29(8):1897–901. https://doi.org/10.2337/dc06-0460.

Article  PubMed  Google Scholar 

Ferreira F, Barbosa HCL, Stoppiglia LF, et al. Decreased insulin secretion in islets from rats fed a low protein diet is associated with a reduced PKAα expression. J Nutr. 2004;134(1):63–7. https://doi.org/10.1093/jn/134.1.63.

Article  CAS  PubMed  Google Scholar 

Filiputti E, Ferreira F, Souza KLA, et al. Impaired insulin secretion and decreased expression of the nutritionally responsive ribosomal kinase protein S6K–1 in pancreatic islets from malnourished rats. Life Sci. 2008;82(9–10):542–8. https://doi.org/10.1016/j.lfs.2007.12.012.

Article  CAS  PubMed  Google Scholar 

de Oliveira Lira A, de Brito Alves JL, Fernandes MP, et al. Maternal low protein diet induces persistent expression changes in metabolic genes in male rats. World J Diabetes. 2020;11(5):182–92. https://doi.org/10.4239/wjd.v11.i5.182.

Article  PubMed  PubMed Central  Google Scholar 

Leite NC, De Paula F, Borck PC, et al. Protein malnutrition potentiates the amplifying pathway of insulin secretion in adult obese mice. Sci Rep. 2016;6(August):1–9. https://doi.org/10.1038/srep33464.

Article  CAS  Google Scholar 

Alves BL, Araújo TD, Guimarães DS, Zoppi CC, Figueiredo MS, Carneiro EM. Amino acid restriction alters survival mechanisms in pancreatic beta cells: possible role of the PI3K/Akt pathway. Eur J Nutr. 2021;60(7):3947–57. https://doi.org/10.1007/s00394-021-02568-2.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mateus Gonçalves L, Vettorazzi JF, Vanzela EC, et al. Amino acid restriction increases β-cell death under challenging conditions. J Cell Physiol. 2019;234(10):16679–84. https://doi.org/10.1002/jcp.28389.

Article  CAS  PubMed  Google Scholar 

Batista TM, Ribeiro RA, da Silva PMR, et al. Taurine supplementation improves liver glucose control in normal protein and malnourished mice fed a high-fat diet. Mol Nutr Food Res. 2013;57(3):423–34. https://doi.org/10.1002/mnfr.201200345.

Article  CAS  PubMed  Google Scholar 

Arantes VC, Teixeira VPA, Reis MAB, et al. Expression of PDX-1 is reduced in pancreatic islets from pups of rat dams fed a low protein diet during gestation and lactation. J Nutr. 2002;132(10):3030–5. https://doi.org/10.1093/jn/131.10.3030.

Article  CAS  PubMed  Google Scholar 

Marroquí L, Batista TM, Gonzalez A, et al. Functional and structural adaptations in the pancreatic α-cell and changes in glucagon signaling during protein malnutrition. Endocrinology. 2012;153(4):1663–72. https://doi.org/10.1210/en.2011-1623.

Article  CAS  PubMed  Google Scholar 

Garofano A, Czernichow P, Brøant B, Inserm U, Debrø HR. Beta-cell mass and proliferation following late fetal and early postnatal malnutrition in the rat. Published online. 1998:1114–20. Accessed on 12 Apr 2023.

Rafacho A, Giozzet VAG, Boschero AC, et al. Reduced pancreatic β-cell mass is associated with decreased FoxO1 and Erk1/2 protein phosphorylation in low-protein malnourished rats. Brazilian J Med Biol Res. 2009;42(10):935–41. https://doi.org/10.1590/S0100-879X2009001000010.

Article  CAS  Google Scholar 

Guizoni DM, Freitas IN, Victorio JA, et al. Taurine treatment reverses protein malnutrition-induced endothelial dysfunction of the pancreatic vasculature: The role of hydrogen sulfide. Metabolism. 2021;116: 154701. https://doi.org/10.1016/j.metabol.2021.154701.

Article  CAS  PubMed  Google Scholar 

Snoeck A, Remacle C, Reusens B, Hoet JJ. Effect of a low protein diet during pregnancy on the fetal rat endocrine pancreas. Biol Neonate. 1990;57:107–8. https://doi.org/10.1159/000243170.

Article  CAS  PubMed  Google Scholar 

Da Silva PMR, Batista TM, Ribeiro RA, Zoppi CC, Boschero AC, Carneiro EM. Decreased insulin secretion in islets from protein malnourished rats is associated with impaired glutamate dehydrogenase function: Effect of leucine supplementation. Metabolism. 2012;61(5):721–32. https://doi.org/10.1016/j.metabol.2011.09.012.

Article  CAS  PubMed  Google Scholar 

Skelin Klemen M, Dolenšek J, Slak Rupnik M, Stožer A. The triggering pathway to insulin secretion: Functional similarities and differences between the human and the mouse β cells and their translational relevance. Islets. 2017;9(6):109–39. https://doi.org/10.1080/19382014.2017.1342022.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Shirakawa J, Terauchi Y. Newer perspective on the coupling between glucose-mediated signaling and β-cell functionality. Endocr J. 2020;67(1):1–8. https://doi.org/10.1507/endocrj.EJ19-0335.

Article  CAS  PubMed  Google Scholar 

MacDonald PE, Joseph JW, Rorsman P. Glucose-sensing mechanisms in pancreatic β-cells. Philos Trans R Soc B Biol Sci. 2005;360(1464):2211–25. https://doi.org/10.1098/rstb.2005.1762.

Article  CAS  Google Scholar 

Rorsman P, Ashcroft FM. Pancreatic β-cell electrical activity and insulin secretion: Of mice and men. Physiol Rev. 2018;98(1):117–214. https://doi.org/10.1152/physrev.00008.2017.

Article  CAS  PubMed 

留言 (0)

沒有登入
gif