Potential therapeutic strategies for osteoarthritis via CRISPR/Cas9 mediated gene editing

Vina ER, Kwoh CK. Epidemiology of osteoarthritis: Literature update. Curr Opin Rheumatol. 2018;30(2):160–7.

Article  PubMed  PubMed Central  Google Scholar 

Loeser RF, et al. Osteoarthritis: A disease of the joint as an organ. Arthritis Rheum. 2012;64(6):1697–707.

Article  PubMed  PubMed Central  Google Scholar 

Kraus VB, et al. Call for standardized definitions of osteoarthritis and risk stratification for clinical trials and clinical use. Osteoarthr Cartil. 2015;23(8):1233–41.

Article  CAS  Google Scholar 

Glyn-Jones S, et al. Osteoarthritis. Lancet. 2015;386(9991):376–87.

Article  CAS  PubMed  Google Scholar 

Barnett R. Osteoarthritis. Lancet. 2018;391(10134):1985.

Article  PubMed  Google Scholar 

Goldring MB, Goldring SR. Osteoarthritis. J Cell Physiol. 2007;213(3):626–34.

Article  CAS  PubMed  Google Scholar 

Grassel S, Muschter D. Recent advances in the treatment of osteoarthritis. F1000Res. 2020;9.

Neogi T. The epidemiology and impact of pain in osteoarthritis. Osteoarthr Cartil. 2013;21(9):1145–53.

Article  CAS  Google Scholar 

Bartley EJ, Palit S, Staud R. Predictors of osteoarthritis pain: The importance of resilience. Curr Rheumatol Rep. 2017;19(9):57.

Article  PubMed  PubMed Central  Google Scholar 

Deveza LA, Nelson AE, Loeser RF. Phenotypes of osteoarthritis: current state and future implications. Clin Exp Rheumatol. 2019;37(Suppl 120):64–72.

PubMed  PubMed Central  Google Scholar 

Grol MW, Lee BH. Gene therapy for repair and regeneration of bone and cartilage. Curr Opin Pharmacol. 2018;40:59–66.

Article  CAS  PubMed  Google Scholar 

Diekman BO, Guilak F. Stem cell-based therapies for osteoarthritis: Challenges and opportunities. Curr Opin Rheumatol. 2013;25(1):119–26.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fitzgerald J. Applications of CRISPR for musculoskeletal research. Bone Joint Res. 2020;9(7):351–9.

Article  PubMed  PubMed Central  Google Scholar 

Deshpande K, et al. Clustered regularly interspaced short palindromic repeats/Cas9 genetic engineering: Robotic genetic surgery. Am J Robot Surg. 2015;2(1):49–52.

Article  PubMed  PubMed Central  Google Scholar 

Fan D, et al. Efficient CRISPR/Cas9-mediated targeted mutagenesis in populus in the first generation. Sci Rep. 2015;5:12217.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kleinstiver BP, et al. Engineered CRISPR-Cas9 nucleases with altered PAM specificities. Nature. 2015;523(7561):481–5.

Article  PubMed  PubMed Central  Google Scholar 

Tanikella AS, et al. Emerging gene-editing modalities for osteoarthritis. Int J Mol Sci. 2020;21(17).

Zhao L, et al. Exploration of CRISPR/Cas9-based gene editing as therapy for osteoarthritis. Ann Rheum Dis. 2019;78(5):676–82.

Article  CAS  PubMed  Google Scholar 

Karimian A, et al. CRISPR/Cas9 technology as a potent molecular tool for gene therapy. J Cell Physiol. 2019;234(8):12267–77.

Article  CAS  PubMed  Google Scholar 

Stewart HL, Kawcak CE. The importance of subchondral bone in the pathophysiology of osteoarthritis. Front Vet Sci. 2018;5:178.

Article  PubMed  PubMed Central  Google Scholar 

Jang S, Lee K, Ju JH. Recent updates of diagnosis, pathophysiology, and treatment on osteoarthritis of the knee. Int J Mol Sci. 2021;22(5).

Kulkarni P, et al. Pathophysiological landscape of osteoarthritis. Adv Clin Chem. 2021;100:37–90.

Article  CAS  PubMed  Google Scholar 

Hunter DJ, Bierma-Zeinstra S. Osteoarthritis. Lancet. 2019;393(10182):1745–59.

Article  CAS  PubMed  Google Scholar 

Juma SN, et al. Osteoarthritis versus psoriasis arthritis: Physiopathology, cellular signaling, and therapeutic strategies. Genes Dis. 2023.

Walker WT, Kawcak CE, Hill AE. Medial femoral condyle morphometrics and subchondral bone density patterns in Thoroughbred racehorses. Am J Vet Res. 2013;74(5):691–9.

Article  PubMed  Google Scholar 

Holmdahl DE, Ingelmark BE. The contact between the articular cartilage and the medullary cavities of the bone. Acta Orthop Scand. 1950;20(2):156–65.

Article  CAS  PubMed  Google Scholar 

Hu Y, et al. Subchondral bone microenvironment in osteoarthritis and pain. Bone Res. 2021;9(1):20.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhu X, et al. Subchondral bone remodeling: A therapeutic target for osteoarthritis. Front Cell Dev Biol. 2020;8:607764.

Article  PubMed  Google Scholar 

Castañeda S, et al. Subchondral bone as a key target for osteoarthritis treatment. Biochem Pharmacol. 2012;83(3):315–23.

Article  PubMed  Google Scholar 

Goldring SR, Goldring MB. Changes in the osteochondral unit during osteoarthritis: Structure, function and cartilage-bone crosstalk. Nat Rev Rheumatol. 2016;12(11):632–44.

Article  PubMed  Google Scholar 

Fan X, et al. Macro, micro, and molecular. Changes of the osteochondral interface in osteoarthritis development. Front Cell Dev Biol. 2021;9:659654.

Article  PubMed  PubMed Central  Google Scholar 

Pan J, et al. In situ measurement of transport between subchondral bone and articular cartilage. J Orthop Res. 2009;27(10):1347–52.

Article  PubMed  PubMed Central  Google Scholar 

Lyons TJ, et al. The normal human chondro-osseous junctional region: evidence for contact of uncalcified cartilage with subchondral bone and marrow spaces. BMC Musculoskelet Disord. 2006;7:52.

Article  PubMed  PubMed Central  Google Scholar 

Madry H, van Dijk CN, Mueller-Gerbl M. The basic science of the subchondral bone. Knee Surg Sports Traumatol Arthrosc. 2010;18(4):419–33.

Article  PubMed  Google Scholar 

Donell S. Subchondral bone remodelling in osteoarthritis. EFORT Open Rev. 2019;4(6):221–9.

Article  PubMed  PubMed Central  Google Scholar 

Perry TA, et al. Association between Bone marrow lesions & synovitis and symptoms in symptomatic knee osteoarthritis. Osteoarthr Cartil. 2020;28(3):316–23.

Article  CAS  Google Scholar 

Fusco M, et al. Degenerative joint diseases and neuroinflammation. Pain Pract. 2017;17(4):522–32.

Article  PubMed  Google Scholar 

Raynauld JP, et al. Correlation between bone lesion changes and cartilage volume loss in patients with osteoarthritis of the knee as assessed by quantitative magnetic resonance imaging over a 24-month period. Ann Rheum Dis. 2008;67(5):683–8.

Article  PubMed  Google Scholar 

Chen L, et al. Horizontal fissuring at the osteochondral interface: A novel and unique pathological feature in patients with obesity-related osteoarthritis. Ann Rheum Dis. 2020;79(6):811–8.

Article  PubMed  Google Scholar 

Coaccioli S et al. Osteoarthritis: New insight on its pathophysiology. J Clin Med. 2022;11(20).

Creamer P, Hunt M, Dieppe P. Pain mechanisms in osteoarthritis of the knee: Effect of intraarticular anesthetic. J Rheumatol. 1996;23(6):1031–6.

CAS  PubMed  Google Scholar 

Crawford RW, et al. Diagnostic value of intra-articular anaesthetic in primary osteoarthritis of the hip. J Bone Joint Surg Br. 1998;80(2):279–81.

Article  CAS  PubMed  Google Scholar 

Kosek E, Ordeberg G. Lack of pressure pain modulation by heterotopic noxious conditioning stimulation in patients with painful osteoarthritis before, but not following, surgical pain relief. Pain. 2000;88(1):69–78.

Article  PubMed  Google Scholar 

Buffington AL, Hanlon CA, McKeown MJ. Acute and persistent pain modulation of attention-related anterior cingulate fMRI activations. Pain. 2005;113(1–2):172–84.

Article  PubMed  Google Scholar 

Suri S, et al. Neurovascular invasion at the osteochondral junction and in osteophytes in osteoarthritis. Ann Rheum Dis. 2007;66(11):1423–8.

Article  PubMed  PubMed Central 

留言 (0)

沒有登入
gif