Effect of meropenem and fluconazole combination therapy on polymicrobial biofilms (Pseudomonas aeruginosa and candida albicans): an in vitro study

[1] F. Alam, D. Catlow, A. Di Maio, J. M. Blair, R. A. Hall, Candida albicans enhances meropenem ‎tolerance of Pseudomonas aeruginosa in a dual-species biofilm, J. Antimicrob. ‎Chemother., 2020, 75, 925. ‎[Crossref], [Google Scholar], [Publisher] [2] W.H. Tay, K.K.L. Chong, K.A. Kline, Polymicrobial–host interactions during infection, ‎J. mol. Biol., 2016, 428, 3355. ‎[Crossref], [Google Scholar], [Publisher] [3] M. Rupp, S. Kern, T. Weber, T. D. Menges, R. Schnettler, C. Heiß, V. Alt, Polymicrobial ‎infections and microbial patterns in infected nonunions–a descriptive analysis of 42 cases, ‎BMC Infect. Dis., 2020, 20, 1. ‎[Crossref], [Google Scholar], [Publisher]   [4] S. Hattab, A.M. Dagher, R.T. Wheeler, Pseudomonas synergizes with fluconazole against ‎Candida during treatment of polymicrobial infection, Infect. Immun., 2022, ‎‎90, e00626. ‎[Crossref], [Google Scholar], [Publisher] [5] D.K. Furtuna, K. Debora, E.B. Wasito, Antimicrobial susceptibility and the pattern of a ‎biofilm-forming pair of organisms from patients treated in intensive care units in Dr. ‎Soetomo General Hospital, Indonesia, Bali Med. J., 2019, 8, 51. ‎‎[Crossref], [Google Scholar] [6] M. Wahjudi, S. S. Widodo, I. B. M. Artadana, Y. Antonius, The character of PA3235 virulence ‎factors of Pseudomonas aeruginosa PAO1–a preliminary study, Bali Med. J., 2023, ‎‎12, 1368. [Crossref], [Google Scholar], [Publisher]‎ [7] I.M.A.S. Putra, N.N.W. Udayani, I.M.Y. Winatra, The effect of giving extract of Giwang ‎ferns (Euphorbia milii) cactus leaves on the number of fibroblast white rats burn infected ‎with Pseudomonas aeruginosa, Bali Med. J., 2023, 12, 431. ‎‎[Crossref], [Google Scholar], [Publisher] [8] X. Kostoulias, G.L. Murray, G.M. Cerqueira, J.B. Kong, F. Bantun, E. Mylonakis, C. A. Khoo, ‎ A.Y. Peleg, Impact of a cross-kingdom signaling molecule of Candida albicans on ‎acinetobacter baumannii physiology, Antimicrob Agents Chemother, 2016, ‎‎60, 161. ‎[Crossref], [Google Scholar], [Publisher] [9] R.M. Vashvaei, Z. Sepehri, M. Jahantigh, F. Javadian, Study the effect of ethanol extract of ‎Achillea, green tea and Ajowan on Pseudomonas aeruginosa, Int. J. Adv. Biol. Biom. Res., 2015, ‎‎3, 145. [Google Scholar], [Publisher] ‎ [10] A. Febriana, A.D.W. Widodo, M.V. Arfijanto, Prevalence and susceptibility profile of ‎carbapenem-resistant pseudomonas aeruginosa (CRPA) at Dr. Soetomo Public Hospital, ‎Surabaya, from January to December 2021, Bali Med. J., 2023, 12, 571. ‎‎[Crossref], [Google Scholar], [Publisher] [11] S. Bhardwaj, S. Bhatia, S. Singh, F. Franco Jr, Growing emergence of drug-resistant ‎Pseudomonas aeruginosa and attenuation of its virulence using quorum sensing inhibitors: A ‎critical review, Iran. J. Basic Med. Sci., 2021, 24, 699. ‎‎[Crossref], [Google Scholar], [Publisher] [12] S. Saha, K.M. Devi, S. Damrolien, K.S. Devi, K.T. Sharma, Biofilm production and its ‎correlation with antibiotic resistance pattern among clinical isolates of Pseudomonas ‎aeruginosa in a tertiary care hospital in north-east India, Int. J. Adv. Med., 2018, 5, 964. ‎ [Google Scholar], [Publisher] [13] N.S. Turkie, S.F. Hameed, Determination of fuconazole using flow injection analysis and ‎Turbidity Measurement by a Homemade NAG-4SX3-3D Analyzer, Asian J. Green ‎Chem., 2022, 6, 255. ‎[Crossref], [Google Scholar], [Publisher] [14] G.M. Pacifici, Clinical pharmacology of fluconazole in neonates: effects and ‎pharmacokinetics, Int. J. Pediatr., 2016, 4, 1475. ‎[Crossref], [Google Scholar], [Publisher]‎ [15] R. Kemenkes, Keputusan Menteri Kesehatan Republik Indonesia Nomor ‎HK.01.07/MENKES/6477/2021 tentang daftar obat esensial nasional, 2021. [Google Scholar] [16] C. Sasse, N. Dunkel, T. Schäfer, S. Schneider, F. Dierolf, K. Ohlsen, J. Morschhäuser, The ‎stepwise acquisition of fluconazole resistance mutations causes a gradual loss of fitness in ‎Candida albicans, Mol. Microbiol., 2012, 86, 539. ‎[Crossref], [Google Scholar], [Publisher] [17] G. Ramadhan, P Hanafi., R. Sulistiorini, Perbandingan Daya Hambat Flukonazol dengan ‎Mikonazol terhadap Jamur Candida albicans secara In Vitro, 2017, 1. ‎[Crossref], [Google Scholar], [Publisher] [18] R.A. Mahdy, W.M. Nada, M.M. Wageh, Topical amphoteriin B and subconjunctival injection ‎of fluconazole (combination therapy) versus topical amphotericin B (monotherapy) in ‎treatment of keratomycosis, J ocul Pharmacol Ther., 2010, ‎‎26, 281. ‎[Crossref], [Google Scholar], [Publisher] [19] I. Syaiful, A.D.W. Widodo, P.D. Endraswari, L. Alimsardjono, B. Utomo, M.V. Arfijanto, The ‎association between biofilm formation ability and antibiotic resistance phenotype in clinical ‎isolates of gram-negative bacteria: a cross-sectional study, Bali Med. J., 2023, ‎‎12, 1014. [Crossref], [Google Scholar], [Publisher]‎ [20] Y.C. Wang, S.C. Kuo, Y.S. Yang, Y.T. Lee, C.-H. Chiu, M.F. Chuang, J.C. Lin, F.Y. Chang, ‎T.L. Chen, Individual or combined effects of meropenem, imipenem, sulbactam, colistin, and ‎tigecycline on biofilm-embedded Acinetobacter baumannii and biofilm architecture, ‎Antimicrobial Agents and Chemotherapy, 2016, 60, 4670. ‎[Crossref], [Google Scholar], [Publisher]‎ [21] J. Haagensen, D. Verotta, L. Huang, J. Engel, A.M. Spormann, K. Yang, Spatiotemporal ‎pharmacodynamics of meropenem-and tobramycin-treated Pseudomonas aeruginosa ‎biofilms, Journal of Antimicrobial Chemotherapy, 2017, 72, 3357. ‎ ‎[Crossref], [Google Scholar], [Publisher] [22] A. Ribera, E. Benavent, C. El-Haj, J. Gomez-Junyent, F. Tubau, R. Rigo-Bonnin, J. Ariza, ‎O. Murillo, Comparative antibiofilm efficacy of meropenem alone and in combination with colistin ‎in an in vitro pharmacodynamic model by extended-spectrum-β-lactamase-producing ‎Klebsiella pneumoniae, Antimicrobial Agents and Chemotherapy, 2019, 63, 940. [Crossref], [Google Scholar], [Publisher]‎ [23] Y. Uemura, L. Qin, K. Gotoh, H. Watanabe, K. Ohta, K.-i. Nakamura, Comparison study of ‎single and concurrent administrations of carbapenem, new quinolone, and macrolide against ‎in vitro nontypeable Haemophilus influenzae mature biofilms, J Infect. ‎Chem., 2013, 19, 902 ‎[Crossref], [Google Scholar], [Publisher] [24] P. Chen, A.K. Seth, J.J. Abercrombie, T.A. Mustoe, K.P. Leung, Activity of imipenem against ‎Klebsiella pneumoniae biofilms in vitro and in vivo, Antimicrobial agents and ‎chemotherapy, 2014, 58, 1208. ‎[Crossref], [Google Scholar], [Publisher] [25] H. Mulcahy, L. Charron-Mazenod, S. Lewenza, Extracellular DNA chelates cations and induces ‎antibiotic resistance in Pseudomonas aeruginosa biofilms, PLoS Pathogens, 2008, ‎‎4, e1000213 ‎[Crossref], [Google Scholar], [Publisher] [26] A. Ghafoor, I. D. Hay, B. H. Rehm, Role of exopolysaccharides in Pseudomonas aeruginosa ‎biofilm formation and architecture, Appl. Environ. Microbiolo., 2011, ‎‎77, 5238. [Crossref], [Google Scholar], [Publisher]‎ [27] J.J. Sidrim, C.E. Teixeira, R.A. Cordeiro, R. S. Brilhante, D.S. Castelo-Branco, S.P. Bandeira, L.P. Alencar, J.S. Oliveira, A.J. Monteiro, J. L. Moreira, β-Lactam antibiotics and vancomycin ‎inhibit the growth of planktonic and biofilm Candida spp.: An additional benefit of antibiotic-‎lock therapy?, Int. J. Antimicrob. Agents, 2015, 45, 420. ‎‎[Crossref], [Google Scholar], [Publisher] [28] P. Uppuluri, A. Srinivasan, A. Ramasubramanian, J.L. Lopez-Ribot, Effects of fluconazole, ‎amphotericin B, and caspofungin on Candida albicans biofilms under conditions of flow and ‎on biofilm dispersion, Antimicrob. Agents Chemother., 2011, 55, 3591. ‎[Crossref], [Google Scholar], [Publisher] [29] R.C. Bassi, M.F. Boriollo, Amphotericin B, fluconazole, and nystatin as development ‎inhibitors of Candida albicans biofilms on a dental prosthesis reline material: Analytical ‎models in vitro, J Prosthet. Dent., 2022, 127, 320. ‎ ‎[Crossref], [Google Scholar], [Publisher]

留言 (0)

沒有登入
gif