The protective effect of alfalfa (Medicago sativa L.) seed extract containing polysaccharides on human keratinocytes and fibroblasts

Blanpain C, Fuchs E. Epidermal stem cells of the skin. Annu Rev Cell Dev Biol. 2006;22:339-73. https://doi.org/10.1146/annurev.cellbio.22.010305.104357

Kazanci A, Kurus M, Atasever A. Analyses of changes on skin by aging. Skin Res Technol. 2017;23(1):48-60. https://doi.org/10.1111/srt.12300

Furue M. Regulation of Filaggrin, Loricrin, and Involucrin by IL-4, IL-13, IL-17A, IL-22, AHR, and NRF2: Pathogenic Implications in Atopic Dermatitis. Int J Mol Sci. 2020;21(15):5382. https://doi.org/10.3390/ijms21155382

Proksch E, Brandner JM, Jensen JM. The skin: an indispensable barrier. Exp Dermatol. 2008;17(12):1063-72. https://doi.org/10.1111/j.1600-0625.2008.00786.x

Günzel D, Yu AS. Claudins and the modulation of tight junction permeability. Physiol Rev. 2013;93(2):525-69. https://doi.org/10.1152/physrev.00019.2012

Yokouchi M, Kubo A, Kawasaki H, Yoshida K, Ishii K, Furuse M, Amagai M. Epidermal tight junction barrier function is altered by skin inflammation, but not by filaggrin-deficient stratum corneum. J Dermatol Sci. 2015;77(1):28-36. https://doi.org/10.1016/j.jdermsci.2014.11.007

Haque A, Woolery-Lloyd H. Inflammaging in Dermatology: A New Frontier for Research. J Drugs Dermatol. 2021;20(2):144-9. https://doi.org/10.36849/JDD.5481

Ledwoń P, Papini AM, Rovero P, Latajka R. Peptides and Peptidomimetics as Inhibitors of Enzymes Involved in Fibrillar Collagen Degradation. Materials (Basel). 2021;14(12):3217. https://doi.org/10.3390/ma14123217

Karimi E, Oskouian E, Oskouian A, Omidvar V, Hendra R, Nazeran H. Insight into the functional and medicinal properties of Medicago sativa (Alfalfa) leaves extract. J Med Plant Res. 2013;7(7):290-7.

Bora KS, Sharma A. Phytochemical and pharmacological potential of Medicago sativa: a review. Pharm Biol. 2011;49(2):211-20. https://doi.org/10.3109/13880209.2010.504732

Rana MG, Katbamna RV, Padhya AA, Dudhrejiya AD, Jivani NP, Sheth NR. In vitro antioxidant and free radical scavenging studies of alcoholic extract of Medicago sativa L. Rom J Biol Plant Biol. 2010;55(1):15-22.

Zagórska-Dziok M, Ziemlewska A, Nizioł-Łukaszewska Z, Bujak T. Antioxidant Activity and Cytotoxicity of Medicago sativa L. Seeds and Herb Extract on Skin Cells. Biores Open Access. 2020;9(1):229-42. https://doi.org/10.1089/biores.2020.0015

Caunii A, Pribac G, Grozea I, Gaitin D, Samfira I. Design of optimal solvent for extraction of bio-active ingredients from six varieties of Medicago sativa. Chem Cent J. 2012;6(1):123. https://doi.org/10.1186/1752-153X-6-123

Horbowicz M, Obendorf RL, McKersie BD, Viands DR. Soluble saccharides and cyclitols in alfalfa (Medicago sativa L.) somatic embryos, leaflets, and mature seeds. Plant Science. 1995;109(2):191-8. https://doi.org/10.1016/0168-9452(95)04155-N

Proksch E, Brandner JM, Jensen JM. The skin: an indispensable barrier. Exp Dermatol. 2008;17(12):1063-72. https://doi.org/10.1111/j.1600-0625.2008.00786.x

Baroni A, Buommino E, De Gregorio V, Ruocco E, Ruocco V, Wolf R. Structure and function of the epidermis related to barrier properties. Clin Dermatol. 201230(3):257-62. https://doi.org/10.1016/j.clindermatol.2011.08.007

Yokouchi M, Kubo A. Maintenance of tight junction barrier integrity in cell turnover and skin diseases. Exp Dermatol. 2018;27(8):876-83. https://doi.org/10.1111/exd.13742

Xie Y, Wang L, Sun H, Shang Q, Wang Y, Zhang G, Yang W, Jiang S. A polysaccharide extracted from alfalfa activates splenic B cells by TLR4 and acts primarily via the MAPK/p38 pathway. Food Funct. 2020;11(10):9035-47. https://doi.org/10.1039/D0FO01711F

Wang L, Xie Y, Yang W, Yang Z, Jiang S, Zhang C, Zhang G. Alfalfa polysaccharide prevents H2O2-induced oxidative damage in MEFs by activating MAPK/Nrf2 signaling pathways and suppressing NF-κB signaling pathways. Sci Rep. 2019;9(1):1782. https://doi.org/10.1038/s41598-018-38466-7

Xie Y, Wang L, Sun H, Wang Y, Yang Z, Zhang G, Jiang S, Yang W. Polysaccharide from alfalfa activates RAW 264.7 macrophages through MAPK and NF-κB signaling pathways. Int J Biol Macromol. 2019;126:960-8. https://doi.org/10.1016/j.ijbiomac.2018.12.227

Choi KC, Hwang JM, Bang SJ, Kim BT, Kim DH, Chae M, Lee SA, Choi GJ, Kim DH, Lee JC. Chloroform extract of alfalfa (Medicago sativa) inhibits lipopolysaccharide-induced inflammation by downregulating ERK/NF-κB signaling and cytokine production. J Med Food. 2013;16(5):410-20. https://doi.org/10.1089/jmf.2012.2679

Yang Z, Hu Y, Yue P, Luo H, Li Q, Li H, Zhang Z, Peng F. Physicochemical Properties and Skin Protection Activities of Polysaccharides from Usnea longissima by Graded Ethanol Precipitation. ACS Omega. 2021;6(38):25010-8. https://doi.org/10.1021/acsomega.1c04163

Luo J, Li Y, Zhai Y, Liu Y, Zeng J, Wang D, Li L, Zhu Z, Chang B, Deng F, Zhang J, Zhou J, Sun L. D-Mannose ameliorates DNCB-induced atopic dermatitis in mice and TNF-α-induced inflammation in human keratinocytes via mTOR/NF-κB pathway. Int Immunopharmacol. 2022;113(Pt A):109378. https://doi.org/10.1016/j.intimp.2022.109378

Li L, Huang T, Liu H, Zang J, Wang P, Jiang X. Purification, structural characterization and anti-UVB irradiation activity of an extracellular polysaccharide from Pantoea agglomerans. Int J Biol Macromol. 2019;137:1002-12. https://doi.org/10.1016/j.ijbiomac.2019.06.191

Migone C, Scacciati N, Grassiri B, De Leo M, Braca A, Puppi D, Zambito Y, Piras AM. Jellyfish Polysaccharides for Wound Healing Applications. Int J Mol Sci. 2022;23(19):11491. https://doi.org/10.3390/ijms231911491

留言 (0)

沒有登入
gif