Effects of green synthesized calcium oxide nanoparticles from extracts of Citrullus colocynthis on body weight, plasma atherogenic index, and histology of liver and stomach of high-fat-diet-fed rats

Hruby A, Hu FB. The epidemiology of obesity: a big picture. Pharmacoeconomics. 2015;33:673-89. http://doi.org/10.1007/s40273-014-0243-x

Lozano I, Van der Werf R, Bietiger W, Seyfritz E, Peronet C, Pinget M, Dal S. High-fructose and high-fat diet-induced disorders in rats: impact on diabetes risk, hepatic and vascular complications. Nutr Metab. 2016;13:1-13. https://doi.org/10.1186/s12986-016-0074-1

Hanlon CL, Yuan L. Nonalcoholic fatty liver disease: The role of visceral adipose tissue. Clin Liver Dis. 2022;19(3):106. https://doi.org/10.1002%2Fcld.1183

Aryee E, Ozkan B, Ndumele CE. Heart failure and obesity: The latest pandemic. Prog Cardiovas Dis. 2023;78:43-8. https://doi.org/10.1016/j.pcad.2023.05.003

Eknoyan G. Obesity, diabetes, and chronic kidney disease. Curr Diab Rep. 2007;7(6):449-53. http://doi.org/10.1007/s11892-007-0076-5

Mach F, Baigent C, Catapano AL, Koskinas KC, Casula M, Badimon L, Wiklund O. 2019 ESC/EAS Guidelines for the management of dyslipidaemias: lipid modification to reduce cardiovascular risk: the Task Force for the management of dyslipidaemias of the European Society of Cardiology (ESC) and European Atherosclerosis Society (EAS). Eur Heart J. 2020;41(1):111-88. https://doi.org/10.1093/eurheartj/ehz455

Ross, R. Atherosclerosis—An inflammatory disease. N Engl J Med 1999;340:115-26.

Collins R, Reith C, Emberson J, Armitage J, Baigent C, Blackwell L, Peto R. Interpretation of the evidence for the efficacy and safety of statin therapy. Lancet. 2016;388(10059):2532-61. https://doi.org/10.1016/S0140-6736(16)31357-5

Kuzmich N, Andresyuk E, Porozov Y, Tarasov V, Samsonov M, Preferanskaya N, Alyautdin R. PCSK9 as a Target for Development of a New Generation of Hypolipidemic Drugs. Molecules. 2022;27(2):434. https://doi.org/10.3390/molecules27020434

Sharma K, Kumar K, Mishra N. Nanoparticulate carrier system: a novel treatment approach for hyperlipidemia. Drug Deliv. 2016;23(3):684-99. https://doi.org/10.3109/10717544.2014.920937

Sharma M, Isha M. Surface stabilized atorvastatin nanocrystals with improved bioavailability, safety and antihyperlipidemic potential. Sci Rep. 2019;9(1):16105. https://doi.org/10.1016/j.msec.2016.08.011

Salvoza N, Giraudi PJ, Tiribelli C, Rosso N. Natural compounds for counteracting nonalcoholic fatty liver disease (NAFLD): advantages and limitations of the suggested candidates. Int J Mol Sci. 2022;23(5):2764. https://doi.org/10.3390/ijms23052764

Nitta SK, Numata K. Biopolymer-based nanoparticles for drug/gene delivery and tissue engineering. Int J Mol Sci. 2013;14(1):1629-54. https://doi.org/10.3390/ijms14011629

Kanoujia J, Singh M, Singh P, Saraf SA. Novel genipin crosslinked atorvastatin loaded sericin nanoparticles for their enhanced antihyperlipidemic activity. IOP Conf Ser Mater Sci Eng. 2016;69:967-76. https://doi.org/10.1016/j.msec.2016.08.011

Singh V, Himanshu P, Vatsala M, Vandana T, Pallavi S, Devendra S. Hypolipidemic effect of [6]-Gingerol-loaded Eudragit polymeric nanoparticles in high-fat diet-induced rats and Gamma scintigraphy evaluation of gastric-retention time. J App Pharm Sci. 2022;12(6):156-63. http://doi.org.10.7324/JAPS.2022.120615

Matloub AA, AbouSamra MM, Salama AH, Rizk MZ, Aly HF, Fouad GI. Cubic liquid crystalline nanoparticles containing a polysaccharide from Ulva fasciata with potent antihyperlipidaemic activity. Saudi Pharm J. 2018;26(2):224-31. https://doi.org/10.1016/j.jsps.2017.12.007

Nouri Z, Hajialyani M, Izadi Z, Bahramsoltani R, Farzaei MH, Abdollahi M. Nanophytomedicines for the prevention of metabolic syndrome: a pharmacological and biopharmaceutical review. Front Bioeng Biotechnol. 2020;8:425. https://doi.org/10.3389/fbioe.2020.00425

Al-Kadhi NA, Taifor AM, Mohsin LF, Abass KS. Effect of Citrullus Colocynthis Seeds Extract on Some Physiological and Biochemical Changes in Male Mice Treated with Anti-Androgenic Drug. Syst Rev Pharm. 2020;11(12):738-42.

Saleem S, Hayat S, Hussain M, Mahmood S, Pervaiz S, Hanif S, Rana MA. Effects of citrullus colocynthis and momordica charantia hydro-ethanol extracts on lipid profile of induced diabetic albino rats. Bio Clin Sci Res J. 2022;2022(1):88. https://doi.org/10.54112/bcsrj.v2022i1.88

Abbas AO, Alaqil AA, Kamel NN, Moustafa ES. Citrullus colocynthis Seed Ameliorates Layer Performance and Immune Response under Acute Oxidative Stress Induced by Paraquat Injection. Animals. 2022;12(8):945. https://doi.org/10.3390/ani12080945

Alzarah MI, Alaqil AA, Abbas AO, Nassar FS, Mehaisen GM, Gouda GF, Moustafa ES. Inclusion of citrullus colocynthis seed extract into diets induced a hypolipidemic effect and improved layer performance. Agriculture. 2021;11(9):808. https://doi.org/10.3390/agriculture11090808

Mishra S, Richhariya N, Alam S, Thakur LK. In House Laboratory Method Validation and Uncertainty Determination of 28 Pesticides in Spinach by Gas Chromatography Using Electron Capture (ECD) and Mass Spectrometric (MS) Detector. Green Chem Env Sust Chem Edu. 2018;7(17):175-90. https://doi.org/10.1007/978-981-10-8390-7_17

Singleton VL, Orthofer R, Lamuela-Raventós RM. Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. Methods Enzymol. 1999;299:152-78. https://doi.org/10.1016/S0076-6879(99)99017-1

Pękal A, Pyrzynska K. Evaluation of aluminium complexation reaction for flavonoid content assay. Food Anal Methods. 2014;7:1776-82. https://doi.org/10.1007/s12161-014-9814-x

Ramli M, Rossani RB, Nadia Y, Darmawan TB, Ismail YS. Nanoparticle fabrication of calcium oxide (CaO) mediated by the extract of red dragon fruit peels (Hylocereus polyrhizus) and its application as inorganic–anti-microorganism materials. IOP Conf Ser Mat Sci Eng. 2019;509(1):012090. https://doi.org/10.1088/1757-899X/509/1/012090

Harnafi H, Aziz M, Amrani S. Sweet basil (Ocimum basilicum L.) improves lipid metabolism in hypercholesterolemic rats. E SPEN Eur-E J Clin Nut Metab. 2009;4(4):e181-e186. https://doi.org/10.1016/j.eclnm.2009.05.011

Dobiás̆ová M, Jiri F. The plasma parameter log (TG/HDL-C) as an atherogenic index: correlation with lipoprotein particle size and esterification rate inapob-lipoprotein-depleted plasma (FERHDL). Clin Biochem. 2011;34(7):583-88. https://doi.org/10.1016/S0009-9120(01)00263-6

da Silva DT, Renata FR, Natália MM, Luana HM, Lauren FF, Sabrina S, Marcelo LV. Natural deep eutectic solvent (NADES)-based blueberry extracts protect against ethanol-induced gastric ulcer in rats. Food Res Int. 2020;138:109718. https://doi.org/10.1016/j.foodres.2020.109718

Mazher M, Ishtiaq M, Hamid B, Haq SM, Mazhar A, Bashir F, Elansary HO. Biosynthesis and Characterization of Calcium Oxide Nanoparticles from Citrullus colocynthis Fruit Extracts; Their Biocompatibility and Bioactivities. Materials. 2023;16(7):2768. https://doi.org/10.3390/ma16072768

Mazher M, Muhammad I, Bilqeesa H, Shiekh MH, Mussaddaq M, Faiza B, Rainer WB. Ethnobotanical importance and conservation status of Citrullus colocynthis (L.) Schrad in division Mirpur, Kashmir Himalaya. Ethnobot Res App. 2023;25:1-14. http://dx.doi.org/10.32859/era.25.33.1-14

Wise J. Covid-19: Highest death rates seen in countries with most overweight populations. BMJ. 2021;372:623. https://doi.org/10.1136/bmj.n623

Verma S, Hussain ME. Obesity and diabetes: an update. Diabetes Metab Syndr Clin Res Rev. 2017;11(1):73-9. https://doi.org/10.1016/j.dsx.2016.06.017

Reddy SH, Al Jahwari MRH, AlTobi, ZMR. A study on FTIR, Antimicrobial, Antioxidant and Hypogycaemic effect of Diospyros kaki and Citrullus colocynthis. Int J Phytomedicines. 2019;11(2):23-31. http://doi.org/10.5138/09750185.2318

Jayaraman R, Shivakumar A, Anitha T, Joshi VD, Palei NN. Antidiabetic effect of petroleum ether extract of Citrullus colocynthis fruits against streptozotocin-induced hyperglycemic rats. Rom J Biol Plant Biol. 2009;4:127-34.

Li X, Morita S, Yamada H, Koga K, Ota W, Furuta T, Kim M. Free Linoleic Acid and Oleic Acid Reduce Fat Digestion and Absorption In Vivo as Potent Pancreatic Lipase Inhibitors Derived from Sesame Meal. Molecules. 2022;27(15):4910. https://doi.org/10.3390/molecules27154910

Walli-Attaei M, Joseph P, Rosengren A, Chow CK, Rangarajan S, Lear SA, Yusuf S. Variations between women and men in risk factors, treatments, cardiovascular disease incidence, and death in 27 high-income, middle-income, and low-income countries (PURE): a prospective cohort study. Lancet. 2020;396(10244):97-109. https://doi.org/10.1016/S0140-6736(20)30543-2

Shin HR, Song S, Cho JA, Ly SY. Atherogenic Index of Plasma and Its Association with Risk Factors of Coronary Artery Disease and Nutrient Intake in Korean Adult Men: The 2013–2014 KNHANES. Nutrients. 2022;14(5):1071. https://doi.org/10.3390/nu14051071

Rahbar AR, Nabipour I. The hypolipidemic effect of Citrullus colocynthis on patients with hyperlipidemia. PJBS. 2010;13(24):1202-1207. https://doi.org/10.3923/pjbs.2010.1202.1207

Daradka H, Almasad MM, WSh Q, El-Banna NM, Samara OH. Hypolipidaemic effects of Citrullus colocynthis L. in rabbits. Pak J Biol Sci. 2007;10(16):2768-71. https://doi.org/10.3923/pjbs.2007.2768.2771

Rodríguez-Pérez C, Segura-Carretero A, del Mar Contreras M. Phenolic compounds as natural and multifunctional anti-obesity agents: A review. Crit Rev Food Sci Nutr. 2019;59(8):1212-29. https://doi.org/10.1080/10408398.2017.1399859

Fernández-Macías JC, Angeles CO, José AV, Iván NP. Atherogenic index of plasma: novel predictive biomarker for cardiovascular illnesses. Arch Med Res. 2019;50(5):285-94. https://doi.org/10.1016/j.arcmed.2019.08.009

Dobiášová M, Frohlich J, Šedová M, Cheung MC, Brown BG. Cholesterol esterification and atherogenic index of plasma correlate with lipoprotein size and findings on coronary angiography. J Lipid Res. 2011;52(3):566-71. http://doi.org/10.1194/jlr.P011668

Dobiasova M. AIP--atherogenic index of plasma as a significant predictor of cardiovascular risk: from research to practice. Vnitr Lek. 2006;52(1):64-71.

Karlsson HL, Pontus C, Johanna G, Lennart M. Copper oxide nanoparticles are highly toxic: a comparison between metal oxide nanoparticles and carbon nanotubes. Chem Res Toxicol. 2008;21(9):1726-32. https://doi.org/10.1021/tx800064j

留言 (0)

沒有登入
gif