Evaluation of miR-let-7f, miR-125a, and miR-125b expression levels in sputum and serum samples of Iranians and Afghans with pulmonary tuberculosis

1. World Health Organization. (‎2020)‎. Global tuberculosis report 2020: executive summary. World Health Organization. https://apps.who.int/iris/handle/10665/337538.
2. World Health Organization. (‎2016)‎. World health statistics 2016: monitoring health for the SDGs, sustainable development goals. World Health Organization. https://apps.who.int/iris/handle/10665/206498.
3. Dastani M, Mohammadzadeh A, Mardaneh J, Ahmadi R. Topic analysis and mapping of tuberculosis research using text mining and co-word analysis. Tuberc Res Treat 2022; 2022: 8039046.
4. Vesga JF, Hallett TB, Reid MJ, Sachdeva KS, Rao R, Khaparde S, et al. Assessing tuberculosis control priorities in high-burden settings: a modelling approach. Lancet Glob Health 2019; 7(5): e585-e595.
5. Zahedi Bialvaei A, Asgharzadeh M, Aghazadeh M, Nourazarian M, Samadi Kafil H. Challenges of tuberculosis in Iran. Jundishapur J Microbiol 2017; 10(3): e37866.
6. Tarashi S, Badi SA, Moshiri A, Ebrahimzadeh N, Fateh A, Vaziri F, et al. The inter-talk between Mycobacterium tuberculosis and the epigenetic mechanisms. Epigenomics 2020; 12: 455-469.
7. Wang J, Xiong K, Zhao S, Zhang C, Zhang J, Xu L, et al. Long-term effects of multi-drug-resistant tuberculosis treatment on gut Microbiota and its health consequences. Front Microbiol 2020; 11: 53.
8. Yadav V, Dwivedi VP, Bhattacharya D, Mittal A, Moodley P, Das G. Understanding the host epigenetics in Mycobacterium tuberculosis infection. J Genet Genome Res 2015; 2: 016.
9. Singh M, Yadav V, Das G (2018). Chapter 4 Host Epigenetic Modifications in Mycobacterium tuberculosis Infection: A Boon or Bane. The Value of BCG and TNF in Autoimmunity, 2st ed. Elsevier. pp. 39-55.
10. Bentwich I, Avniel A, Karov Y, Aharonov R, Gilad S, Barad O, et al. Identification of hundreds of conserved and nonconserved human microRNAs. Nat Genet 2005; 37: 766-770.
11. Kim JK, Yuk JM, Kim SY, Kim TS, Jin HS, Yang CS, et al. MicroRNA-125a inhibits autophagy activation and antimicrobial responses during mycobacterial infection. J Immunol 2015; 194: 5355-5365.
12. Liu G, Wan Q, Li J, Hu X, Gu X, Xu S. Silencing miR-125b-5p attenuates inflammatory response and apoptosis inhibition in Mycobacterium tuberculosis-infected human macrophages by targeting DNA damage-regulated autophagy modulator 2 (DRAM2). Cell Cycle 2020; 19: 3182-3194.
13. Kumar M, Sahu SK, Kumar R, Subuddhi A, Maji RK, Jana K, et al. MicroRNA let-7 modulates the immune response to Mycobacterium tuberculosis infection via control of A20, an inhibitor of the NF-κB pathway. Cell Host Microbe 2015; 17: 345-356.
14. Tarashi S, Sakhaee F, Masoumi M, Ghazanfari Jajin M, Siadat SD, Fateh A. Molecular epidemiology of nontuberculous mycobacteria isolated from tuberculosis-suspected patients. AMB Express 2023; 13: 49.
15. Kramer MF. Stem-loop RT-qPCR for miRNAs. Curr Protoc Mol Biol 2011; Chapter 15: Unit 15. 10.
16. Harapan H, Fitra F, Ichsan I, Mulyadi M, Miotto P, Hasan NA, et al. The roles of microRNAs on tuberculosis infection: meaning or myth? Tuberculosis (Edinb) 2013; 93: 596-605.
17. Kathirvel M, Mahadevan S. The role of epigenetics in tuberculosis infection. Epigenomics 2016; 8: 537-549.
18. Huang RS, Gamazon ER, Ziliak D, Wen Y, Im HK, Zhang W, et al. Population differences in microRNA expression and biological implications. RNA Biol 2011; 8: 692-701.
19. Mehrjoo Z, Fattahi Z, Beheshtian M, Mohseni M, Poustchi H, Ardalani F, et al. Distinct genetic variation and heterogeneity of the Iranian population. PLoS Genet 2019; 15(9): e1008385.
20. Zadran SK, Ilyas M, Dawari S. Genetic variants associated with diseases in Afghan population. Mol Genet Genomic Med 2021; 9(5): e1608.
21. Liu F, Chen J, Wang P, Li H, Zhou Y, Liu H, et al. MicroRNA-27a controls the intracellular survival of Mycobacterium tuberculosis by regulating calcium-associated autophagy. Nat Commun 2018; 9: 4295.
22. Ouimet M, Koster S, Sakowski E, Ramkhelawon B, Van Solingen C, Oldebeken S, et al. Mycobacterium tuberculosis induces the miR-33 locus to reprogram autophagy and host lipid metabolism. Nat Immunol 2016; 17: 677-686.
23. Wang C, Yang S, Liu C-M, Jiang T-T, Chen Z-L, Tu H-H, et al. Screening and identification of four serum miRNAs as novel potential biomarkers for cured pulmonary tuberculosis. Tuberculosis (Edinb) 2018; 108: 26-34.
24. Niu W, Sun B, Li M, Cui J, Huang J, Zhang L. TLR-4/microRNA-125a/NF-κB signaling modulates the immune response to Mycobacterium tuberculosis infection. Cell Cycle 2018; 17: 1931-1945.
25. Zhang K, Huang Q, Deng S, Yang Y, Li J, Wang S. Mechanisms of TLR4-mediated autophagy and nitroxidative stress. Front Cell Infect Microbiol 2021; 11: 766590.
26. Mehta P. MicroRNA research: The new dawn of Tuberculosis. Indian J Tuberc 2021; 68: 321-329.
27. Guio H, Aliaga-Tobar V, Galarza M, Pellon-Cardenas O, Capristano S, Gomez HL, et al. Comparative profiling of circulating exosomal small RNAs derived from peruvian patients with tuberculosis and pulmonary adenocarcinoma. Front Cell Infect Microbiol 2022; 12: 909837.
28. Sun X, Liu K, Wang X, Zhang T, Li X, Zhao Y. Diagnostic value of microRNA 125b in peripheral blood mononuclear cells for pulmonary tuberculosis. Mol Med Rep 2021; 23: 249.
29. Rajaram MV, Ni B, Morris JD, Brooks MN, Carlson TK, Bakthavachalu B, et al. Mycobacterium tuberculosis lipomannan blocks TNF biosynthesis by regulating macrophage MAPK-activated protein kinase 2 (MK2) and microRNA miR-125b. Proc Natl Acad Sci U S A 2011; 108: 17408-17413.
30. Wang L, Xiong Y, Fu B, Guo D, Zaky MY, Lin X, et al. MicroRNAs as immune regulators and biomarkers in tuberculosis. Front Immunol 2022; 13: 1027472.
31. Sengupta S, Pattanaik KP, Mishra S, Sonawane A. Epigenetic orchestration of host immune defences by Mycobacterium tuberculosis. Microbiol Res 2023; 273: 127400.
32. Sinigaglia A, Peta E, Riccetti S, Venkateswaran S, Manganelli R, Barzon L. Tuberculosis-associated microRNAs: from pathogenesis to disease biomarkers. Cells 2020; 9: 2160.
33. Liang S, Ma J, Gong H, Shao J, Li J, Zhan Y, et al. Immune regulation and emerging roles of noncoding RNAs in Mycobacterium tuberculosis infection. Front Immunol 2022; 13: 987018.
34. da Silva MNS, da Veiga Borges Leal DF, Sena C, Pinto P, Gobbo AR, da Silva MB, et al. Association between SNPs in microRNAs and microRNAs-Machinery Genes with Susceptibility of Leprosy in the Amazon Population. Int J Mol Sci 2022; 23: 10628.
35. Jumat MI, Sarmiento ME, Acosta A, Chin KL. Role of non-coding RNAs in tuberculosis and their potential for clinical applications. J Appl Microbiol 2023; 134: lxad104.
36. Wang Z, Xu H, Wei Z, Jia Y, Wu Y, Qi X, et al. The role of non-coding RNA on macrophage modification in tuberculosis infection. Microb Pathog 2020; 149: 104592.
37. Mirzaei R, Babakhani S, Ajorloo P, Ahmadi RH, Hosseini-Fard SR, Keyvani H, et al. The emerging role of exosomal miRNAs as a diagnostic and therapeutic biomarker in Mycobacterium tuberculosis infection. Mol Med 2021; 27: 34.
38. De Bruyn G, Adams GJ, Teeter LD, Soini H, Musser JM, Graviss EA. The contribution of ethnicity to Mycobacterium tuberculosis strain clustering. Int J Tuberc Lung Dis 2001; 5: 633-641.
39. Nahid P, Jarlsberg L, Kato-Maeda M, Segal M, Osmond D, Gagneux S, et al. Interplay of strain and race/ethnicity in the innate immune response to M. tuberculosis. PLoS One 2018; 13(5): e0195392.
40. Dou H-Y, Chen Y-Y, Kou S-C, Su I-J. Prevalence of Mycobacterium tuberculosis strain genotypes in Taiwan reveals a close link to ethnic and population migration. J Formos Med Assoc 2015; 114: 484-488.
41. Karmon AE, Cardozo ER, Rueda BR, Styer AK. MicroRNAs in the development and pathobiology of uterine leiomyomata: does evidence support future strategies for clinical intervention? Hum Reprod Update 2014; 20: 670-687.
42. Pedersen JL, Bokil NJ, Saunders BM. Developing new TB biomarkers, are miRNA the answer? Tuberculosis (Edinb) 2019; 118: 101860.

留言 (0)

沒有登入
gif