Therapeutic Effects of Combination of Nebivolol and Donepezil: Targeting Multifactorial Mechanisms in ALS

Mitchell JD, Borasio GD. Amyotrophic lateral sclerosis. Lancet. 2007;369(9578):2031–41. https://doi.org/10.1016/S0140-6736(07)60944-1.

Article  CAS  PubMed  Google Scholar 

Scott A. Drug therapy: on the treatment trail for ALS. Nature. 2017;550(7676):S120–1. https://doi.org/10.1038/550S120a.

Article  CAS  PubMed  Google Scholar 

Kumar V, Islam A, Hassan MI, et al. Therapeutic progress in amyotrophic lateral sclerosis-beginning to learning. Eur J Med Chem. 2016;121:903–17. https://doi.org/10.1016/j.ejmech.2016.06.017.

Article  CAS  PubMed  Google Scholar 

Gordon P, Corcia P, Meininger V. New therapy options for amyotrophic lateral sclerosis. Expert Opin Pharmacother. 2013;14(14):1907–17. https://doi.org/10.1517/14656566.2013.819344.

Article  CAS  PubMed  Google Scholar 

Wright AL, Della Gatta PA, Le S, et al. Riluzole does not ameliorate disease caused by cytoplasmic TDP-43 in a mouse model of amyotrophic lateral sclerosis. Eur J Neurosci. 2021;54(6):6237–55. https://doi.org/10.1111/ejn.15422.

Article  CAS  PubMed  Google Scholar 

Witzel S, Maier A, Steinbach R, et al. Safety and effectiveness of long-term intravenous administration of edaravone for treatment of patients with amyotrophic lateral sclerosis. JAMA Neurol. 2022;79(2):121–30. https://doi.org/10.1001/jamaneurol.2021.4893.

Article  PubMed  Google Scholar 

Blackburn D, Sargsyan S, Monk PN, et al. Astrocyte function and role in motor neuron disease: a future therapeutic target? Glia. 2009;57(12):1251–64. https://doi.org/10.1002/glia.20848.

Article  PubMed  Google Scholar 

Henriques A, Pitzer C, Schneider A. Neurotrophic growth factors for the treatment of amyotrophic lateral sclerosis: where do we stand? Front Neurosci. 2010;4:32. https://doi.org/10.3389/fnins.2010.00032.

Article  PubMed  PubMed Central  Google Scholar 

Liu J, Wang F. Role of neuroinflammation in amyotrophic lateral sclerosis: Cellular mechanisms and therapeutic implications. Front Immunol. 2017;8:1005. https://doi.org/10.3389/fimmu.2017.01005.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tortelli R, Zecca C, Piccininni M, et al. Plasma inflammatory cytokines are elevated in ALS. Front Neurol. 2020;11:552295. https://doi.org/10.3389/fneur.2020.552295.

Article  PubMed  PubMed Central  Google Scholar 

Hu Y, Cao C, Qin XY, et al. Increased peripheral blood inflammatory cytokine levels in amyotrophic lateral sclerosis: a meta-analysis study. Sci Rep. 2017;7:9094. https://doi.org/10.1038/s41598-017-09097-1.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fischer LR, Culver DG, Tennant P, et al. Amyotrophic lateral sclerosis is a distal axonopathy: evidence in mice and man. Exp Neurol. 2004;185(2):232–40. https://doi.org/10.1016/j.expneurol.2003.10.004.

Article  PubMed  Google Scholar 

Cappello V, Francolini M. Neuromuscular junction dismantling in amyotrophic lateral sclerosis. Int J Mol Sci. 2017. https://doi.org/10.3390/ijms18102092.

Article  PubMed  PubMed Central  Google Scholar 

Collard JF, Cote F, Julien JP. Defective axonal transport in a transgenic mouse model of amyotrophic lateral sclerosis. Nature. 1995;375(6526):61–4. https://doi.org/10.1038/375061a0.

Article  CAS  PubMed  Google Scholar 

Strom AL, Gal J, Shi P, et al. Retrograde axonal transport and motor neuron disease. J Neurochem. 2008;106(2):495–505. https://doi.org/10.1111/j.1471-4159.2008.05393.x.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dupuis L, Gonzalez de Aguilar JL, Oudart H, et al. Mitochondria in amyotrophic lateral sclerosis: a trigger and a target. Neurodegener Dis. 2004;1(6):245–54. https://doi.org/10.1159/000085063.

Article  PubMed  Google Scholar 

Bacman SR, Bradley WG, Moraes CT. Mitochondrial involvement in amyotrophic lateral sclerosis: trigger or target? Mol Neurobiol. 2006;33(2):113–31. https://doi.org/10.1385/MN:33:2:113.

Article  CAS  PubMed  Google Scholar 

Martin LJ. Mitochondriopathy in Parkinson disease and amyotrophic lateral sclerosis. J Neuropathol Exp Neurol. 2006;65(12):1103–10. https://doi.org/10.1097/01.jnen.0000248541.05552.c4.

Article  CAS  PubMed  Google Scholar 

Kinoshita Y, Ito H, Hirano A, et al. Nuclear contour irregularity and abnormal transporter protein distribution in anterior horn cells in amyotrophic lateral sclerosis. J Neuropathol Exp Neurol. 2009;68(11):1184–92. https://doi.org/10.1097/NEN.0b013e3181bc3bec.

Article  CAS  PubMed  Google Scholar 

Shaw PJ, Ince PG. Glutamate, excitotoxicity and amyotrophic lateral sclerosis. J Neurol. 1997;244(Suppl 2):S3-14. https://doi.org/10.1007/BF03160574.

Article  PubMed  Google Scholar 

Corona JC, et al. Glutamate excitotoxicity and therapeutic targets for amyotrophic lateral sclerosis. Expert Opin Ther Targets. 2007;11(11):1415–28. https://doi.org/10.1517/14728222.11.11.1415.

Article  CAS  PubMed  Google Scholar 

Carter BJ, Anklesaria P, Choi S, et al. Redox modifier genes and pathways in amyotrophic lateral sclerosis. Antioxid Redox Signal. 2009;11(7):1569–86. https://doi.org/10.1089/ars.2008.2414.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Edgar R, Domrachev M, Lash AE. Gene Expression Omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res. 2002;30(1):207–10. https://doi.org/10.1093/nar/30.1.207.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dafinca R, Scaber J, Ababneh N, et al. C9orf72 hexanucleotide expansions are associated with altered endoplasmic reticulum calcium homeostasis and stress granule formation in induced pluripotent stem cell-derived neurons from patients with amyotrophic lateral sclerosis and frontotemporal dementia. Stem Cells. 2016;34(8):2063–78. https://doi.org/10.1002/stem.2388.

Article  CAS  PubMed  Google Scholar 

Fujimori K, Ishikawa M, Otomo A, et al. Modeling sporadic ALS in iPSC-derived motor neurons identifies a potential therapeutic agent. Nat Med. 2018;24(10):1579–89. https://doi.org/10.1038/s41591-018-0140-5.

Article  CAS  PubMed  Google Scholar 

Rabin SJ, Kim JM, Baughn M, et al. Sporadic ALS has compartment-specific aberrant exon splicing and altered cell-matrix adhesion biology. Hum Mol Genet. 2010;19(2):313–28. https://doi.org/10.1093/hmg/ddp498.

Article  CAS  PubMed  Google Scholar 

Kirby J, Ning K, Ferraiuolo L, et al. Phosphatase and tensin homologue/protein kinase B pathway linked to motor neuron survival in human superoxide dismutase 1-related amyotrophic lateral sclerosis. Brain. 2011;134(Pt 2):506–17. https://doi.org/10.1093/brain/awq345.

Article  PubMed  PubMed Central  Google Scholar 

Highley JR, Kirby J, Jansweijer JA, et al. Loss of nuclear TDP-43 in amyotrophic lateral sclerosis (ALS) causes altered expression of splicing machinery and widespread dysregulation of RNA splicing in motor neurones. Neuropathol Appl Neurobiol. 2014;40(6):670–85. https://doi.org/10.1111/nan.12148.

Article  CAS  PubMed  Google Scholar 

Cooper-Knock J, Bury JJ, Heath PR, et al. C9ORF72 GGGGCC expanded repeats produce splicing dysregulation which correlates with disease severity in amyotrophic lateral sclerosis. PLoS ONE. 2015;10(5):e0127376. https://doi.org/10.1371/journal.pone.0127376.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sareen D, O’Rourke JG, Meera P, et al. Targeting RNA foci in iPSC-derived motor neurons from ALS patients with a C9ORF72 repeat expansion. Sci Transl Med. 2013;5(208):208ra149. https://doi.org/10.1126/scitranslmed.3007529.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Langfelder P, Horvath S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics. 2008;9:559. https://doi.org/10.1186/1752-0509-1-54.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Subramanian A, Narayan R, Corsello SM, et al. A next generation connectivity map: L1000 platform and the first 1,000,000 profiles. Cell. 2017;171(6):1437–52.e17. https://doi.org/10.1016/j.cell.2017.10.049.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lamb J, Crawford ED, Peck D, et al. The Connectivity Map: using gene-expression signatures to connect small molecules, genes, and disease. Science. 2006;313(5795):1929–35. https://doi.org/10.1126/science.1132939.

Article  CAS  PubMed 

留言 (0)

沒有登入
gif