Natural compounds as strong SARS-CoV-2 main protease inhibitors: computer-based study

[1] N. Tytarenko, I. Kukuruza, O. Zasadnіuk, A. Kostyuchenko, A. Vozniuk, Tactics of treatment of catastrophic anti-phospholipid syndrome in pregnant woman: based on a clinical case, J. Med. Chem. Sci., 2023, 6, 2569-2579. [Crossref], [Pdf], [Publisher] [2] A.R. Nugroho, N.A. Widjaja, R.A. Setyoningrum, Predictive value of prognostic nutritional index in children with COVID-19, J. Med. Chem. Sci., 2023, 6, 2367. [Crossref], [Google Scholar], [Publisher] [3] G.L. Gupta, N. Patil Samant, Acute and sub-acute oral toxicity evaluation of avicularin, J. Med. Chem. Sci., 2023, 6, 2327-2337. [Crossref], [Pdf], [Publisher] [4] N. Purwitasari, S. Siswodihardjo, M.A. Alhoot, M. Agil, Pharmacological potential of pome indonesian medicinal plants as promising options for COVID-19 during the pandemic era: a literature review, J. Med. Chem. Sci., 2023, 2735-2749. [Crossref], [Google Scholar], [Publisher] [5] H.R. Angourani, A. Zarei, M.M. Moghadam, A. Ramazani, A. Mastinu, Investigation on the essential oils of the achillea species: from chemical analysis to the in silico uptake against SARS-CoV-2 main protease, Life, 2023, 13, 378. [Crossref], [Google Scholar], [Publisher] [6] A. Selmi, A. Zarei, W. Tachoua, H. Puschmann, H. Teymourinia, A. Ramazani, Synthesis and structural analysis of a novel stable quinoline dicarbamic acid: x-ray single crystal structure of (2-((4-((2-(carboxy (methyl) amino) ethoxy) carbonyl) quinoline-2-yl) oxy) ethyl)(methyl)-carbamic acid and molecular docking assessments to test its inhibitory potential against SARS-CoV-2 main protease, Chem. Methodol., 2022, 463-474. [Crossref], [Google Scholar], [Publisher] [7] D. Suárez, N. Díaz, SARS-CoV-2 main protease: a molecular dynamics study, J. Chem. Inf. Model, 2020, 60, 5815-5831. [Crossref], [Google Scholar], [Publisher] [8] A. Zarei, A. Ramazani, A. Rezaei, S. Moradi, Screening of honey bee pollen constituents against COVID-19: An emerging hot spot in targeting SARS-CoV-2-ACE-2 interaction, Nat. Prod. Res., 2023, 37, 974-980. [Crossref], [Google Scholar], [Publisher] [9] M. Dodangeh, A. Ramazani, M. Maghsoodlou, A. Zarei, S. Rezayati, Application of readily available metals for CH activation, Curr. Org. Chem., 2020, 24, 1582-1609. [Crossref], [Google Scholar], [Publisher] [10] S. Choudhary, Y.S. Malik, S. Tomar, Identification of SARS-CoV-2 cell entry inhibitors by drug repurposing using in silico structure-based virtual screening approach, Front immunol.,  2020, 11, 1664. [Crossref], [Google Scholar], [Publisher] [11] H.M. Mengist, T. Dilnessa, T. Jin, Structural basis of potential inhibitors targeting SARS-CoV-2 main protease, Front Chem.,  2021, 9, 622898. [Crossref], [Google Scholar], [Publisher] [12] A.K. Singh, A. Singh, R. Singh, A. Misra, An updated practical guideline on use of molnupiravir and comparison with agents having emergency use authorization for treatment of COVID-19, Diabetes Metab. Syndr., 2022, 16, 102396. [Crossref], [Google Scholar], [Publisher] [13] L.D. Saravolatz, S. Depcinski, M. Sharma, Molnupiravir and nirmatrelvir-ritonavir: Oral coronavirus disease 2019 antiviral Drugs, Clin. Infect. Dis., 2023, 76, 165-171. [Crossref], [Google Scholar], [Publisher] [14] J. Stephenson, FDA Authorizes Pharmacists to Prescribe Oral Antiviral Medication for COVID-19, In JAMA Health Forum., 2022. American Medical Association. [Crossref], [Google Scholar], [Publisher] [15] P. Shivshankar, H. Karmouty-Quintana, T. Mills, M.F. Doursout, Y. Wang, A.K. Czopik, S.E. Evans, H.K. Eltzschig, X. Yuan, SARS-CoV-2 infection: host response, immunity, and therapeutic targets, Inflamm., 2022, 45, 1430-1449. [Crossref], [Google Scholar], [Publisher] [16] A. Rosidi, A. Khomsan, B. Setiawan, H. Riyadi, D. Briawan, Antioxidant potential of temulawak (Curcuma xanthorrhiza roxb), Pak. J. Nutr.,  2016, 15, 556 [Crossref], [Google Scholar], [Publisher]. [17] R.N. Kirchdoerfer, N. Wang, J. Pallesen, H.L. Turner, C.A. Cottrell, J.S. McLellan, A.B. Ward, SARS spike glycoprotein - human ACE2 complex, stabilized variant, all ACE2-bound particles, Sci. Rep., 2020. [Crossref], [Google Scholar], [Publisher] [18] G.M. Morris, R. Huey, W. Lindstrom, M.F. Sanner, R.K. Belew, D.S. Goodsell, A.J. Olson, AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility, J. Comput. Chem., 2009, 30, 2785-2791. [Crossref], [Google Scholar], [Publisher] [19] Y. Wan, J. Shang, R. Graham, R.S. Baric, F. Li, Receptor recognition by the novel coronavirus from Wuhan: an analysis based on decade-long structural studies of SARS coronavirus, J. virol., 2020, 94. [Crossref], [Google Scholar], [Publisher] [20] E. Lindahl, B. Hess, D. Van Der Spoel, GROMACS 3.0: a package for molecular simulation and trajectory analysis, Mol. model annual., 2001, 7, 306-317. [Crossref], [Google Scholar], [Publisher] [21] A.W. Schüttelkopf, D.M. Van Aalten, PRODRG: a tool for high-throughput crystallography of protein–ligand complexes, Acta Crystallogr D Biol Crystallogr., 2004, 60, 1355-1363. [Crossref], [Google Scholar], [Publisher] [22] S.P. Hirshman, J. Whitson, Steepest‐descent moment method for three‐dimensional magnetohydrodynamic equilibria, Phys. Fluids, 1983, 26, 3553-3568 [Crossref], [Google Scholar], [Publisher] [23] B. Hess, H. Bekker, H.J. Berendsen, J.G. Fraaije, LINCS: a linear constraint solver for molecular simulations, J. Chem. Inf. model, 1997, 18, 1463-1472. [Crossref], [Google Scholar], [Publisher] [24] W.F. Van Gunsteren, H.J. Berendsen, A leap-frog algorithm for stochastic dynamics, Mol. Simul., 1988, 1, 173-185. [Crossref], [Google Scholar], [Publisher].  [25] S. Genheden, U. Ryde, The MM/PBSA and MM/GBSA methods to estimate ligand-binding affinities, Expert Opin. drug discov., 2015, 10, 449-461. [Crossref], [Google Scholar], [Publisher] [26] R.A. Laskowski, M.B. Swindells, LigPlot+: multiple ligand–protein interaction diagrams for drug discovery, Chem. Inf. Model., 2011, 51, 2778–2786. [Crossref], [Google Scholar], [Publisher] [27] J.C. Ferreira, W.M. Rabeh, Biochemical and biophysical characterization of the main protease, 3-chymotrypsin-like protease (3CLpro) from the novel coronavirus SARS-CoV 2, Sci. Rep.,  2020, 10, 22200. [Crossref], [Google Scholar], [Publisher]

留言 (0)

沒有登入
gif