Meglumine cyclic adenylate improves cardiovascular hemodynamics and motor-function in a rat model of acute T4 thoracic spinal cord injury

Harman KA, States G, Wade A, Stepp C, Wainwright G, DeVeau K, et al. Temporal analysis of cardiovascular control and function following incomplete T3 and T10 spinal cord injury in rodents. Physiol Rep. 2018;6:e13634.

Article  PubMed  PubMed Central  Google Scholar 

Sabharwal S. Addressing cardiometabolic risk in adults with spinal cord injury: acting now despite knowledge gaps. Spinal Cord Ser Cases. 2019;5:96.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Phillips AA, Krassioukov AV. Contemporary Cardiovascular Concerns after Spinal Cord Injury: Mechanisms, Maladaptations, and Management. J Neurotrauma. 2015;32:1927–42.

Article  PubMed  Google Scholar 

Popok DW, West CR, Hubli M, Currie KD, Krassioukov AV. Characterizing the Severity of Autonomic Cardiovascular Dysfunction after Spinal Cord Injury Using a Novel 24 h Ambulatory Blood Pressure Analysis Software. J Neurotrauma. 2017;34:559–66.

Article  PubMed  Google Scholar 

Karim F, Chang P, Garrison C, Steiner M. Role of Theophylline in Management of Bradycardia Secondary to High Cervical Spinal Cord Injury in a Seven-Year-Old Child: Case Report and a Review of Literature. Cureus. 2020;12:e10941.

PubMed  PubMed Central  Google Scholar 

Soubeyrand M, Dubory A, Laemmel E, Court C, Vicaut E, Duranteau J, et al. Effect of norepinephrine on spinal cord blood flow and parenchymal hemorrhage size in acute-phase experimental spinal cord injury. Eur Spine J. 2014;23:658–65.

Article  PubMed  Google Scholar 

Sadek MS, Cachorro E, El-Armouche A, Kämmerer S. Therapeutic Implications for PDE2 and cGMP/cAMP Mediated Crosstalk in Cardiovascular Diseases. Int J Mol Sci. 2020;21:7462.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Winslow RL, Walker MA, Greenstein JL. Modeling calcium regulation of contraction, energetics, signaling, and transcription in the cardiac myocyte. Wiley Interdiscip Rev Syst Biol Med. 2016;8:37–67.

Article  CAS  PubMed  Google Scholar 

McCabe KJ, Rangamani P. Computational modeling approaches to cAMP/PKA signaling in cardiomyocytes. J Mol Cell Cardiol. 2021;154:32–40.

Article  CAS  PubMed  Google Scholar 

Batty NJ, Fenrich KK, Fouad K. The role of cAMP and its downstream targets in neurite growth in the adult nervous system. Neurosci Lett. 2017;652:56–63.

Article  CAS  PubMed  Google Scholar 

Siddiq MM, Hannila SS. Looking downstream: the role of cyclic AMP-regulated genes in axonal regeneration. Front Mol Neurosci. 2015;8:26.

Article  PubMed  PubMed Central  Google Scholar 

Bavencoffe A, Li Y, Wu Z, Yang Q, Herrera J, Kennedy EJ, et al. Persistent Electrical Activity in Primary Nociceptors after Spinal Cord Injury Is Maintained by Scaffolded Adenylyl Cyclase and Protein Kinase A and Is Associated with Altered Adenylyl Cyclase Regulation. J Neurosci. 2016;36:1660–8.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Blesch A, Lu P, Tsukada S, Alto LT, Roet K, Coppola G, et al. Conditioning lesions before or after spinal cord injury recruit broad genetic mechanisms that sustain axonal regeneration: superiority to camp-mediated effects. Exp Neurol. 2012;235:162–73.

Article  PubMed  Google Scholar 

Boomkamp SD, McGrath MA, Houslay MD, Barnett SC. Epac and the high affinity rolipram binding conformer of PDE4 modulate neurite outgrowth and myelination using an in vitro spinal cord injury model. Br J Pharm. 2014;171:2385–98.

Article  CAS  Google Scholar 

Xia T, Huang B, Ni S, Gao L, Wang J, Wang J, et al. The combination of db-cAMP and ChABC with poly(propylene carbonate) microfibers promote axonal regenerative sprouting and functional recovery after spinal cord hemisection injury. Biomed Pharmacother. 2017;86:354–62.

Article  CAS  PubMed  Google Scholar 

Sierksma AS, Van den Hove DL, Pfau F, Philippens M, Bruno O, Fedele E, et al. Improvement of spatial memory function in APPswe/PS1dE9 mice after chronic inhibition of phosphodiesterase type 4D. Neuropharmacology. 2014;77:120–30.

Article  CAS  PubMed  Google Scholar 

Wu D, Zhao Y, Yang Y, Wang W, Xu R. A multicenter clinical study on clinical effects of meglumine cyclic adenylate in treating patients with chronic pulmonary heart disease. Zhonghua Nei Ke Za Zhi. 2001;40:467–70.

CAS  PubMed  Google Scholar 

Feng L, Lai Y, Bu SZ. The efficacy of Meglumine adenosine cyclophosphate vs Amrinone in the treatment of congestive heart failure. Foreing Med Sci Sect Cardiovusc Dis. 2002;29:41–3.

Google Scholar 

Ding D, Ding J, Jin Z, Qin X, Guan L, Cui X, et al. Evaluation of curative effect of meglumine cyclic adenylate combined with recombinant human brain natriuretic peptide in treatment of coronary artery disease patients with heart failure. J Jilin Univ. 2011;37:723–6.

CAS  Google Scholar 

LI QF, Huang LJ, Wei S. Therapeutic effect of meglumine cyclic adenosine monophosphate on chronic heart failure in patients with type 2 diabetes mellitus and coronary heart disease. Chin Foreign Med Res. 2014;12:9–11.

Google Scholar 

Liao J, Xie J, Lin D, Lu N, Guo L, Li W, et al. Meglumine cyclic adenylate improves neurological function following acute spinal cord injury in rats. Mol Med Rep. 2014;10:1225–30.

Article  CAS  PubMed  Google Scholar 

Arifin WN, Zahiruddin WM. Sample Size Calculation in Animal Studies Using Resource Equation Approach[J]. Malaysian J Med Sci. 2017;24:101–5.

Wrathall JR, Pettegrew RK, Harvey F. Spinal cord contusion in the rat: production of graded, reproducible, injury groups. Exp Neurol. 1985;88:108–22.

Article  CAS  PubMed  Google Scholar 

Ploumis A, Yadlapalli N, Fehlings MG, Kwon BK, Vaccaro AR. A systematic review of the evidence supporting a role for vasopressor support in acute SCI. Spinal Cord. 2010;48:356–62.

Article  CAS  PubMed  Google Scholar 

Hawryluk G, Whetstone W, Saigal R, Ferguson A, Talbott J, Bresnahan J, et al. Mean Arterial Blood Pressure Correlates with Neurological Recovery after Human Spinal Cord Injury: Analysis of High Frequency Physiologic Data. J Neurotrauma. 2015;32:1958–67.

Article  PubMed  PubMed Central  Google Scholar 

Aigbe F, Adeyemi O, Zubaid M, Rathore H, Sofidiya M. Effect of the aqueous root extract of aristolochiaringens and its fractions on haemodynamic parameters in a rodent model of essential hypertension. basic Clin Pharmacol Toxicol. 2014;115:21–21.

Google Scholar 

Merrick A, Hadley WM, Holcslaw TL. The effect of large doses of atropine sulfate on heart rate and blood pressure in rats. Res Commun Chem Pathol Pharm. 1979;25:13–22.

CAS  Google Scholar 

Walters BC, Hadley MN, Hurlbert RJ, Aarabi B, Dhall SS, Gelb DE, et al. Guidelines for the management of acute cervical spine and spinal cord injuries: 2013 update. Neurosurgery. 2013;60:82–91.

Article  PubMed  Google Scholar 

Evans LT, Lollis SS, Ball PA. Management of acute spinal cord injury in the neurocritical care unit. Neurosurg Clin N Am. 2013;24:339–47.

Article  PubMed  Google Scholar 

Scheff SW, Saucier DA, Cain ME. A statistical method for analyzing rating scale data: the BBB locomotor score. J Neurotrauma. 2002;19:1251–60.

Article  PubMed  Google Scholar 

Rivlin AS, Tator CH. Objective clinical assessment of motor function after experimental spinal cord injury in the rat. J Neurosurg. 1977;47:577–81.

Article  CAS  PubMed  Google Scholar 

Buñag RD, Butterfield J. Tail-cuff blood pressure measurement without external preheating in awake rats. Hypertension 1982;4:898–903.

Article  PubMed  Google Scholar 

Cawthon DF, Senter HJ, Stewart WB. Comparison of hydrogen clearance and 14C-antipyrine autoradiography in the measurement of spinal cord blood flow after severe impact injury. J Neurosurg. 1980;52:801–7.

Article  CAS  PubMed  Google Scholar 

Augulis V, Sepinwall J. Brazilin-toluidine blue O and hematoxylin-darrow red methods for brain and spinal cord. Stain Technol. 1969;44:131–7.

Article  CAS  PubMed  Google Scholar 

Schleicher A, Zilles K. A quantitative approach to cytoarchitectonics: analysis of structural inhomogeneities in nervous tissue using an image analyser. J Microsc. 1990;157:367–81.

Article  CAS  PubMed  Google Scholar 

Dykstra M, Reuss L. Biological Electron Microscopy: Theory, Techniques, and Troubleshooting. Springer Science & Business Med. 2003; 2003: 182–95.

Oh YM, Eun JP. Cardiovascular dysfunction due to sympathetic hypoactivity after complete cervical spinal cord injury: A case report and literature review. Med (Baltim). 2015;94:e686.

Article  Google Scholar 

Hou S, Saltos TM, Mironets E, Trueblood CT, Connors TM, Tom VJ, et al. Grafting Embryonic Raphe Neurons Reestablishes Serotonergic Regulation of Sympathetic Activity to Improve Cardiovascular Function after Spinal Cord Injury. J Neurosci. 2020;40:1248–64.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Laird AS, Carrive P, Waite PM. Cardiovascular and temperature changes in spinal cord injured rats at rest and during autonomic dysreflexia. J Physiol. 2006;577:539–48.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Iorio-Morin C, Noonan VK, White B, Noreau L, Leblond J, Dumont FS, et al. Quality of Life and Health Utility Scores Among Canadians Living With Traumatic Spinal Cord Injury - A National Cross-Sectional Study. Spine (Philos Pa 1976). 2018;43:999–1006.

Article  Google Scholar 

Inskip JA, Ramer LM, Ramer MS, Krassioukov AV, Claydon VE. Spectral analyses of cardiovascular control in rodents with spinal cord injury. J Neurotrauma. 2012;29:1638–49.

留言 (0)

沒有登入
gif