Challenges in the Hospital Water System and Innovations to Prevent Healthcare-Associated Infections

Falkinham JO, Hilborn ED, Arduino MJ, Pruden A, Edwards MA. Epidemiology and ecology of opportunistic premise plumbing pathogens: Legionella pneumophila, Mycobacterium avium, and Pseudomonas aeruginosa. Environ Health Perspect Environmental Health Perspectives. 2015;123:749–58.

Article  CAS  PubMed  Google Scholar 

Kanamori H, Weber DJ, Rutala WA. Healthcare outbreaks associated with a water reservoir and infection prevention strategies Weinstein RA, editor. Clin Infect Dis. 2016;62:1423–35.

Article  PubMed  Google Scholar 

Ferranti G, Marchesi I, Favale M, Borella P, Bargellini A. Aetiology, source and prevention of waterborne healthcare-associated infections: a review. J Med Microbiol. 2014;63:1247–59.

Article  PubMed  Google Scholar 

Rutala WA, Weber DJ 1997 Water as a reservoir of nosocomial pathogens. Infect Control Hosp Epidemiol. [Cambridge University Press, Society for Healthcare Epidemiology of America]; 1997;18:609–16.

Nisar MA, Ross KE, Brown MH, Bentham R, Whiley H. Water stagnation and flow obstruction reduces the quality of potable water and increases the risk of Legionelloses. Front Environ Sci. 2020;8:1–13.

Article  Google Scholar 

Patterson WJ, Seal DV, Curran E, Sinclair TM, McLuckie JC. Fatal nosocomial Legionnaires’ disease: relevance of contamination of hospital water supply by temperature-dependent buoyancy-driven flow from spur pipes. Epidemiol Infect. 1994;112:513–25.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tercelj-Zorman M, Seljak M, Stare J, Mencinger J, Rakovec J, Rylander R, et al. A hospital outbreak of Legionella from a contaminated water supply. Arch Environ Health. 2004;59:156–9.

Article  PubMed  Google Scholar 

Baker AW, Lewis SS, Alexander BD, Chen LF, Wallace RJ, Brown-Elliott BA, et al. Two-phase hospital-associated outbreak of Mycobacterium abscessus: investigation and mitigation. Clin Infect Dis Off Publ Infect Dis Soc Am. 2017;64:902–11.

Google Scholar 

Weber DJ, Rutala WA, Blanchet CN, Jordan M, Gergen MF. Faucet aerators: a source of patient colonization with Stenotrophomonas maltophilia. Am J Infect Control. 1999;27:59–63.

Article  CAS  PubMed  Google Scholar 

Lv Y, Xiang Q, Jin YZ, Fang Y, Wu YJ, Zeng B, et al. Faucet aerators as a reservoir for Carbapenem-resistant Acinetobacter baumannii: a healthcare-associated infection outbreak in a neurosurgical intensive care unit. Antimicrob Resist Infect Control. 2019;8:205.

Article  PubMed  PubMed Central  Google Scholar 

Kappstein I, Grundmann H, Hauer T, Niemeyer C. Aerators as a reservoir of Acinetobacter junii: an outbreak of bacteraemia in paediatric oncology patients. J Hosp Infect. 2000;44:27–30.

Article  CAS  PubMed  Google Scholar 

Palmore TN, Stock F, White M, Bordner M, Michelin A, Bennett JE, et al. A cluster of nosocomial Legionnaire’s disease linked to a contaminated hospital decorative water fountain. Infect Control Hosp Epidemiol Off J Soc Hosp Epidemiol Am. 2009;30:764–8.

Article  Google Scholar 

Haupt TE, Heffernan RT, Kazmierczak JJ, Nehls-Lowe H, Rheineck B, Powell C, et al. An outbreak of Legionnaires disease associated with a decorative water wall fountain in a hospital. Infect Control Hosp Epidemiol. 2012;33:185–91.

Article  PubMed  Google Scholar 

Controlling Legionella in decorative fountains | CDC [Internet]. 2022 [cited 2022 Sep 23]. Available from: https://www.cdc.gov/legionella/wmp/control-toolkit/decorative-fountains.html

Schuetz AN, Hughes RL, Howard RM, Williams TC, Nolte FS, Jackson D, et al. Pseudo-outbreak of Legionella pneumophila serogroup 8 infection associated with a contaminated ice machine in a bronchoscopy suite. Infect Control Hosp Epidemiol. 2009;30:461–6.

Article  CAS  PubMed  Google Scholar 

Bangsborg JM, Uldum S, Jensen JS, Bruun BG. Nosocomial legionellosis in three heart-lung transplant patients: case reports and environmental observations. Eur J Clin Microbiol Infect Dis Off Publ Eur Soc Clin Microbiol. 1995;14:99–104.

Article  CAS  Google Scholar 

Gebo KA, Srinivasan A, Perl TM, Ross T, Groth A, Merz WG. Pseudo-outbreak of Mycobacterium fortuitum on a human immunodeficiency virus ward: transient respiratory tract colonization from a contaminated ice machine. Clin Infect Dis Off Publ Infect Dis Soc Am. 2002;35:32–8.

Article  Google Scholar 

Rodriguez JM, Xie YL, Winthrop KL, Schafer S, Sehdev P, Solomon J, et al. Mycobacterium chelonae facial infections following injection of dermal filler. Aesthet Surg J. 2013;33:265–9.

Article  PubMed  Google Scholar 

Hoffmann KK, Weber DJ, Gergen MF, Rutala WA, Tate G. Pseudomonas aeruginosa-related postoperative endophthalmitis linked to a contaminated phacoemulsifier. Arch Ophthalmol Chic Ill. 1960;2002(120):90–3.

Google Scholar 

van Ingen J, Kohl TA, Kranzer K, Hasse B, Keller PM, Katarzyna Szafrańska A, et al. Global outbreak of severe Mycobacterium chimaera disease after cardiac surgery: a molecular epidemiological study. Lancet Infect Dis. 2017;17:1033–41.

Article  PubMed  Google Scholar 

Rhee C, Baker MA, Tucker R, Vaidya V, Holtzman M, Seethala RR, et al. Cluster of Burkholderia cepacia complex infections associated with extracorporeal membrane oxygenation water heater devices. Clin Infect Dis Off Publ Infect Dis Soc Am. 2022;ciac200.

Lowe C, Willey B, O’Shaughnessy A, Lee W, Lum M, Pike K, et al. Outbreak of extended-spectrum β-lactamase-producing Klebsiella oxytoca infections associated with contaminated handwashing sinks(1). Emerg Infect Dis. 2012;18:1242–7.

Article  PubMed  PubMed Central  Google Scholar 

Lalancette C, Charron D, Laferrière C, Dolcé P, Déziel E, Prévost M, et al. Hospital drains as reservoirs of Pseudomonas aeruginosa: multiple-locus variable-number of tandem repeats analysis genotypes recovered from faucets, sink surfaces and patients. Pathog Basel Switz. 2017;6:E36.

Article  Google Scholar 

Leitner E, Zarfel G, Luxner J, Herzog K, Pekard-Amenitsch S, Hoenigl M, et al. Contaminated handwashing sinks as the source of a clonal outbreak of KPC-2-producing Klebsiella oxytoca on a hematology ward. Antimicrob Agents Chemother. 2015;59:714–6.

Article  PubMed  Google Scholar 

De Geyter D, Blommaert L, Verbraeken N, Sevenois M, Huyghens L, Martini H, et al. The sink as a potential source of transmission of carbapenemase-producing Enterobacteriaceae in the intensive care unit. Antimicrob Resist Infect Control. 2017;6:24.

Article  PubMed  PubMed Central  Google Scholar 

Park SC, Parikh H, Vegesana K, Stoesser N, Barry KE, Kotay SM, et al. Risk factors associated with carbapenemase-producing Enterobacterales (CPE) positivity in the hospital wastewater environment. Appl Environ Microbiol. 2020;86:e01715-e1720.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Burgos-Garay M, Ganim C, de Man TJB, Davy T, Mathers AJ, Kotay S, et al. Colonization of carbapenem-resistant Klebsiella pneumoniae in a sink-drain model biofilm system. Infect Control Hosp Epidemiol. 2021;42:722–30.

Article  PubMed  Google Scholar 

Kotay SM, Parikh HI, Barry K, Gweon HS, Guilford W, Carroll J, et al. Nutrients influence the dynamics of Klebsiella pneumoniae carbapenemase producing enterobacterales in transplanted hospital sinks. Water Res. 2020;176:115707.

Article  CAS  PubMed  Google Scholar 

•• Kotay SM, Donlan RM, Ganim C, Barry K, Christensen BE, Mathers AJ. Droplet- rather than aerosol-mediated dispersion is the primary mechanism of bacterial transmission from contaminated hand-washing sink traps. Appl Environ Microbiol. 2019;85:e01997-18. This study describes the mechanism of environmental contamination with bacteria that colonize hand-washing sinks, including biofilm formation in the P-trap, followed by contamination of the strainer, and then droplet dispersal from water flow.

Article  CAS  PubMed  PubMed Central  Google Scholar 

• Aranega-Bou P, George RP, Verlander NQ, Paton S, Bennett A, Moore G, et al. Carbapenem-resistant Enterobacteriaceae dispersal from sinks is linked to drain position and drainage rates in a laboratory model system. J Hosp Infect. 2019;102:63–9. This analysis shows the potential distance of bacterial dispersal from sink splatter and the efficacy of modifications in sink design to reduce dispersal.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Salm F, Deja M, Gastmeier P, Kola A, Hansen S, Behnke M, et al. Prolonged outbreak of clonal MDR Pseudomonas aeruginosa on an intensive care unit: contaminated sinks and contamination of ultra-filtrate bags as possible route of transmission? Antimicrob Resist Infect Control. 2016;5:53.

Article  PubMed  PubMed Central  Google Scholar 

Hota S, Hirji Z, Stockton K, Lemieux C, Dedier H, Wolfaardt G, et al. Outbreak of multidrug-resistant Pseudomonas aeruginosa colonization and infection secondary to imperfect intensive care unit room design. Infect Control Hosp Epidemiol. 2009;30:25–33.

Article  PubMed  Google Scholar 

Totaro M, Valentini P, Costa AL, Giorgi S, Casini B, Baggiani A. Rate of Legionella pneumophila colonization in hospital hot water network after time flow taps installation. J Hosp Infect. 2018;98:60–3.

Article  CAS  PubMed  Google Scholar 

Whiley H, Hinds J, Xi J, Bentham R. Real-time continuous surveillance of temperature and flow events presents a novel monitoring approach for hospital and healthcare water distribution systems. Int J Environ Res Public Health. 2019;16:E1332.

Article  Google Scholar 

Benoit M-È, Prévost M, Succar A, Charron D, Déziel E, Robert E, et al. Faucet aerator design influences aerosol size distribution and microbial contamination level. Sci Total Environ. 2021;775:145690.

Article  CAS  PubMed  Google Scholar 

Trautmann M, Halder S, Hoegel J, Royer H, Haller M. Point-of-use water filtration reduces endemic Pseudomonas aeruginosa infections on a surgical intensive care unit. Am J Infect Control. 2008;36:421–9.

Article  PubMed  Google Scholar 

• Parkinson J, Baron JL, Hall B, Bos H, Racine P, Wagener MM, et al. Point-of-use filters for prevention of health care-acquired Legionnaires’ disease: field evaluation of a new filter product and literature review. Am J Infect Control. 2020;48:132–8. This field evaluation demonstrates the efficacy of point-of-use (POU) filters in reducing opportunistic premise plumbing pathogens from tap water and includes a review of commercially available POU filters.

Article  PubMed  Google Scholar 

Bicking Kinsey C, Koirala S, Solomon B, Rosenberg J, Robinson BF, Neri A, et al. Pseudomonas aeruginosa outbreak in a neonatal intensive care unit attributed to hospital tap water. Infect Control Hosp Epidemiol. 2017;38:801–8.

Article  PubMed  Google Scholar 

Zhou ZY, Hu BJ, Qin L, Lin YE, Watanabe H, Zhou Q, et al. Removal of waterborne pathogens from liver transplant unit water taps in prevention of healthcare-associated infections: a proposal for a cost-effective, proactive infection control strategy. Clin Microbiol Infect. 2014;20:310–4.

Article  CAS  PubMed  Google Scholar 

Williams MM, Chen T-H, Keane T, Toney N, Toney S, Armbruster CR

留言 (0)

沒有登入
gif