Tattoo pigments are localized intracellularly in the epidermis and dermis of fresh and old tattoos – in vivo study using two-photon excited FLIM

Tattoo and Body Art – Research Article

Kröger M. · Schleusener J. · Lademann J. · Meinke M.C. · Jung S. · Darvin M.E.

Log in to MyKarger to check if you already have access to this content.

Buy FullText & PDF Unlimited re-access via MyKarger Unrestricted printing, no saving restrictions for personal use
read more

CHF 38.00 *
EUR 35.00 *
USD 39.00 *

Select

KAB

Buy a Karger Article Bundle (KAB) and profit from a discount!

If you would like to redeem your KAB credit, please log in.

Save over 20% compared to the individual article price.

Learn more

Rent via DeepDyve Unlimited fulltext viewing of this article Organize, annotate and mark up articles Printing and downloading restrictions apply

Start free trial

Subscribe Access to all articles of the subscribed year(s) guaranteed for 5 years Unlimited re-access via Subscriber Login or MyKarger Unrestricted printing, no saving restrictions for personal use read more

Subcription rates

Select

* The final prices may differ from the prices shown due to specifics of VAT rules.

Article / Publication Details Abstract

Background: The knowledge about the location and kinetics of tattoo pigments in human skin after application and during the recovery is restricted due to the limitation of in vivo methods for visualizing pigments. Here, the localization and distribution of tattoo ink pigments in freshly and old tattooed human skin during the regeneration of the epidermis and dermis were investigated in vivo. Methods: Two-photon excited fluorescence lifetime imaging (TPE-FLIM) was used to identify tattoo ink pigments in human skin in vivo down to the reticular dermis. One subject with a freshly applied tattoo and 10 subjects with tattoos applied over 3 years ago were investigated in the epidermal and dermal layers in vivo. One histological slide of tattooed skin was used to localize skin-resident tattoo pigment using light microscopy. Results: The carbon black particles deposited around the incision have still been visible 84 days after tattoo application, showing delayed recovery of the epidermis. The TPE-FLIM parameters of carbon black tattoo ink pigments were found to be different to all skin components except for melanin. Distinction from melanin in the skin was based on higher fluorescence intensity and agglomerate size. Using TPE-FLIM in vivo tattoo pigment was found in 75% of tattoos applied up to 9 years ago in the epidermis within keratinocytes, dendritic cells and basal cells and in the dermis within the macrophages, mast cells and fibroblasts. Loading of highly fluorescent carbon black particles enables in vivo imaging of dendritic cells in the epidermis and fibroblasts in the dermis, which cannot be visualized in native conditions. The collagen I structures showed a higher directionality similar to scar tissue resulting in a greater firmness and decreased elasticity of the tattooed skin. Conclusions: Here we show the kinetics and location of carbon black tattoo ink pigment immediately after application for the first time in vivo in human skin. Carbon black particles are located exclusively intracellularly in the skin of fresh and old tattoos. They are found within macrophages, mast cells and fibroblasts in the dermis and within keratinocytes, dendritic cells and basal cells in the continuously renewed epidermis even in 9-year-old tattoos in skin showing no inflammation.

S. Karger AG, Basel

Article / Publication Details Copyright / Drug Dosage / Disclaimer Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.

留言 (0)

沒有登入
gif