Dynamics and synchronization control of fractional conformable neuron system

AbdelAty AM, Fouda ME, Eltawil AM (2022) On numerical approximations of fractional-order spiking neuron models. Commun Nonlinear Sci Numer Simul 105:106078. https://doi.org/10.1016/j.cnsns.2021.106078

Article  Google Scholar 

Abdeljawad T (2015) On conformable fractional calculus. J Comput Appl Math 279:57–66. https://doi.org/10.1016/j.cam.2014.10.016

Article  Google Scholar 

Adomian G (1991) A review of the decomposition method and some recent results for nonlinear equations. Comput Math Appl 21(5):101–127. https://doi.org/10.1016/0898-1221(91)90220-X

Article  Google Scholar 

Aqil M, Hong KS, Jeong MY (2012) Synchronization of coupled chaotic FitzHugh–Nagumo systems. Commun Nonlinear Sci Numer Simul 17(4):1615–1627. https://doi.org/10.1016/j.matcom.2011.10.005

Article  Google Scholar 

Avcı D, Eroglu BBI, Özdemir N (2017) Conformable fractional wave-like equation on a radial symmetric plate. In: Babiarz A, Czornik A, Klamka J, Niezabitowski M (eds) A Theory and Applications of Non-integer Order Systems. Springer, Cham, pp 137–146. https://doi.org/10.1007/978-3-319-45474-0_13

Chapter  Google Scholar 

Baleanu D, Diethelm K, Scalas E, Trujillo JJ (2012) Fractional calculus: models and numerical methods. World Sci. https://doi.org/10.1142/8180

Article  Google Scholar 

Bao B, Hu A, Bao H, Xu Q, Chen M, Wu H (2018) Three-dimensional memristive Hindmarsh-Rose neuron model with hidden coexisting asymmetric behaviors. Complexity. https://doi.org/10.1155/2018/3872573

Article  Google Scholar 

Bao H, Hu A, Liu W, Bao B (2019) Hidden bursting firings and bifurcation mechanisms in memristive neuron model with threshold electromagnetic induction. IEEE Trans Neural Netw Lear Syst 31(2):502–511. https://doi.org/10.1109/TNNLS.2019.2905137

Article  Google Scholar 

Cafagna D, Grassi G (2008) Bifurcation and chaos in the fractional-order Chen system via a time-domain approach. Int J Bifurcat Chaos 18(07):1845–1863. https://doi.org/10.1142/S0218127408021415

Article  Google Scholar 

Cafagna D, Grassi G (2009) Hyperchaos in the fractional-order Rössler system with lowest-order. Int J Bifurcat Chaos 19(01):339–347. https://doi.org/10.1142/S0218127409022890

Article  Google Scholar 

Chow CC, Kopell N (2000) Dynamics of spiking neurons with electrical coupling. Neural Comput 12(7):1643–1678. https://doi.org/10.1162/089976600300015295

Article  CAS  Google Scholar 

Chung WS (2015) Fractional Newton mechanics with conformable fractional derivative. J Comput Appl Math 290:150–158. https://doi.org/10.1016/j.cam.2015.04.049

Article  Google Scholar 

Çimen Z, Korkmaz N, Altuncu Y, Kılıç R (2020) Evaluating the effectiveness of several synchronization control methods applying to the electrically and the chemically coupled hindmarsh-rose neurons. Biosystems 198:104284. https://doi.org/10.1016/j.biosystems.2020.104284

Article  CAS  Google Scholar 

Daftardar-Gejji V, Bhalekar S (2008) Solving multi-term linear and non-linear diffusion–wave equations of fractional order by Adomian decomposition method. Appl Math Comput 202(1):113–120. https://doi.org/10.1016/j.amc.2008.01.027

Article  Google Scholar 

Dalir M, Bashour M (2010) Applications of fractional calculus. Appl Math Sci 4(21):1021–1032

Google Scholar 

Dayan P, Abbott LF (2005) Theoretical neuroscience: computational and mathematical modeling of neural systems. MIT press

Google Scholar 

Drapaca C (2016) Fractional calculus in neuronal electromechanics. J Mech Mater Struct 12(1):35–55. https://doi.org/10.2140/jomms.2017.12.35

Article  Google Scholar 

Duan JS, Rach R, Baleanu D, Wazwaz AM (2012) A review of the Adomian decomposition method and its applications to fractional differential equations. Commun Fract Calc 3(2):73–99

Google Scholar 

FitzHugh R (1969) Mathematical models for excitation and propagation in nerve. In: Schawn HP (ed) Biol Eng. McGraw-Hill, New York, pp 1–85

Google Scholar 

He S, Sun K, Mei X, Yan B, Xu S (2017) Numerical analysis of a fractional-order chaotic system based on conformable fractional-order derivative. Eur Phys J plus 132(36):1–11. https://doi.org/10.1140/epjp/i2017-11306-3

Article  Google Scholar 

He S, Banerjee S, Yan B (2018) Chaos and symbol complexity in a conformable fractional-order memcapacitor system. Complexity 2018:4140762. https://doi.org/10.1155/2018/4140762

Article  Google Scholar 

He S, Sun K, Wang H (2019) Dynamics and synchronization of conformable fractional-order hyperchaotic systems using the Homotopy analysis method. Commun Nonlinear Sci Numer Simul 73:146–164. https://doi.org/10.1016/j.cnsns.2019.02.007

Article  Google Scholar 

Hindmarsh JL, Rose RM (1984) A model of neural bursting using three couple first order differential equations. Proc R Soc Lond Biol Sci 221(1222):87–102. https://doi.org/10.1098/rspb.1984.0024

Article  CAS  Google Scholar 

Hodgkin A, Huxley A (1952) A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol 117:500–544. https://doi.org/10.1113/jphysiol.1952.sp004764

Article  CAS  Google Scholar 

Ionescu C, Lopes A, Copot D, Machado JT, Bates JH (2017) The role of fractional calculus in modeling biological phenomena: a review. Commun Nonlinear Sci Numer Simul 51:141–159. https://doi.org/10.1016/j.cnsns.2017.04.001

Article  Google Scholar 

İskender Eroğlu BB, Avci D, Özdemir N (2017) Optimal control problem for a conformable fractional heat conduction equation. Acta Phys Polonica A 132:658–662. https://doi.org/10.12693/APhysPolA.132.658

Article  Google Scholar 

Izhikevich EM (2003) Simple model of spiking neurons. IEEE Trans Neural Netw 14(6):1569–1572. https://doi.org/10.1109/tnn.2003.820440

Article  CAS  Google Scholar 

Jun D, Guang-Jun Z, Yong X, Hong Y, Jue W (2014) Dynamic behavior analysis of fractional-order Hindmarsh-Rose neuronal model. Cogn Neurodyn 8(2):167–175. https://doi.org/10.1007/s11571-013-9273-x

Article  Google Scholar 

Kandel ER, Schwartz JH, Jessell TM (2000) Principles of neural science. McGraw-Hill, New York

Google Scholar 

Kaslik E, Sivasundaram S (2012) Nonlinear dynamics and chaos in fractional-order neural networks. Neural Netw 32:245–256. https://doi.org/10.1016/j.neunet.2012.02.030

Article  Google Scholar 

Khalil R, Al Horani M, Yousef A, Sababheh M (2014) A new definition of fractional derivative. J Comput Appl Math 264:65–70. https://doi.org/10.1016/j.cam.2014.01.002

Article  Google Scholar 

Korkmaz N, Öztürk İ, Kilic R (2016) Multiple perspectives on the hardware implementations of biological neuron models and programmable design aspects. Turk J Electr Eng Comput Sci 24(3):1729–1746. https://doi.org/10.3906/elk-1309-5

Article  Google Scholar 

Korkmaz N, Saçu İE (2022) An alternative perspective on determining the optimum fractional orders of the synaptic coupling functions for the simultaneous neural patterns. Nonlinear Dyn 110:3791–3806. https://doi.org/10.1007/s11071-022-07782-z

Article  Google Scholar 

Kuang S, Cong S (2008) Lyapunov control methods of closed quantum systems. Automatica 44(1):98–108. https://doi.org/10.1016/j.automatica.2007.05.013

Article  Google Scholar 

Li JS, Dasanayake I, Ruths J (2013) Control and synchronization of neuron ensembles. IEEE Trans Autom Control 58(8):1919–1930. https://doi.org/10.1109/TAC.2013.2250112

Article  Google Scholar 

Lu Q, Gu H, Yang Z, Shi X, Duan L, Zheng Y (2008) Dynamics of firing patterns, synchronization and resonances in neuronal electrical activities: experiments and analysis. Acta Mech Sin 24(6):593–628. https://doi.org/10.1007/s10409-008-0204-8

Article  CAS  Google Scholar 

Lundstrom BN, Higgs MH, Spain WJ, Fairhall AL (2008) Fractional differentiation by neocortical pyramidal neurons. Nat Neurosci 11:1335–1342. https://doi.org/10.1038/nn.2212

Article  CAS  Google Scholar 

Machado JT, Kiryakova V, Mainardi F (2011) Recent history of fractional calculus. Commun Nonlinear Sci Numer Simul 16(3):1140–1153. https://doi.org/10.1016/j.cnsns.2010.05.027

Article  Google Scholar 

Malik SA, Mir AH (2020) FPGA realization of fractional order neuron. Appl Math Model 81:372–385. https://doi.org/10.1016/j.apm.2019.12.008

Article  Google Scholar 

McCulloch WS, Pits WH (1943) A logical calculus of ideas immanent innervous activity. Bull Math Biophys 5:115–133. https://doi.org/10.1007/BF02478259

Article  Google Scholar 

Mondal A, Sharma SK, Upadhyay RK, Mondal A (2019) Firing activities of a fractional-order FitzHugh-Rinzel bursting neuron model and its coupled dynamics. Sci Rep 9(1):1–11. https://doi.org/10.1038/s41598-019-52061-4

Article  CAS  Google Scholar 

Morris C, Lecar H (1981) Voltage oscillations in the barnacle giant muscle fiber. Biophys J 35:193–213. https://doi.org/10.1016/S0006-3495(81)84782-0

Article  CAS  Google Scholar 

Nguyen LH, Hong KS (2011) Synchronization of coupled chaotic FitzHugh–Nagumo neurons via Lyapunov functions. Math Comput Simul 82(4):590–603. https://doi.org/10.1016/j.matcom.2011.10.005

Article  Google Scholar 

Pérez JES, Gómez-Aguilar JF, Baleanu D, Tchier F (2018) Chaotic attractors with fractional conformable derivatives in the Liouville-Caputo sense and its dynamical behaviors. Entropy 20:384. https://doi.org/10.3390/e20050384

Article  Google Scholar 

Podlubny I (1998) Fractional differential equations: an introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications. Elsevier

Google Scholar 

Purves D, Augustine GJ, Fitzpatrick D, Hall WC, Lamantia AS, Mcnamara JO, Williams SM (2004) Neuroscience, 3rd edn. Sinauer Associates Inc, USA

Google Scholar 

Ray SS (2009) Analytical solution for the space fractional diffusion equation by two-step Adomian decomposition method. Commun Nonlinear Sci Numer Simul 14(4):1295–1306. https://doi.org/10.1016/j.cnsns.2008.01.010

Article  Google Scholar 

Ruan J, Sun K, Mou J, He S, Zhang L (2018) Fractional-order simplest memristor-based chaotic circuit with new derivative. Eur Phys J plus 133(3):1–12. https://doi.org/10.1140/epjp/i2018-11828-0

Article  Google Scholar 

Shi M, Wang Z (2014) Abundant bursting patterns of a fractional-order Morris-Lecar neuron model. Commun Nonlinear Sci Numer Simul 19(6):1956–1969. https://doi.org/10.1016/j.cnsns.2013.10.032

Article  Google Scholar 

Song L, Wang W (2013) A new improved Adomian decomposition method and its application to fractional differential equations. Appl Math Model 37(3):1590–1598. https://doi.org/10.1016/j.apm.2012.03.016

Article  Google Scholar 

Soudry D, Meir R (2012) Conductance-based neuron models and the slow dynamics of excitability. Front Comput Neurosci 6:4. https://doi.org/10.3389/fncom.2012.00004

Article  Google Scholar 

留言 (0)

沒有登入
gif