Deciphering the chromatin spatial organization landscapes during BMMSC differentiation

Elsevier

Available online 30 January 2023

Journal of Genetics and GenomicsAuthor links open overlay panelAbstract

The differentiation imbalance in bone marrow mesenchymal stem cells (BMMSCs) is critical for the development of bone density diseases as the population ages. BMMSCs are precursor cells for osteoblasts and adipocytes; however, the chromatin organization landscapes during BMMSC differentiation remain elusive. In this study, we systematically delineate the four-dimensional (4D) genome and dynamic epigenetic atlas of BMMSCs by RNA sequencing (RNA-seq), assay for transposase-accessible chromatin sequencing (ATAC-seq), and high-throughput chromosome conformation capture (Hi-C). The structure analyses reveal 17.5% common and 28.5%∼30% specific loops among BMMSCs, osteoblasts, and adipocytes. The subsequent correlation of genome-wide association studies (GWAS) and expression quantitative trait locus (eQTL) data with multi-omics analysis reveal 274 genes and 3634 single nucleotide polymorphisms (SNPs) associated with bone degeneration and osteoporosis (OP). We hypothesize that SNP mutations affect transcription factor (TF) binding sites, thereby affecting changes in gene expression. Furthermore, 26 motifs, 260 TFs, and 291 SNPs are identified to affect the eQTL. Among these genes, DAAM2, TIMP2, and TMEM241 were found to be essential for diseases such as bone degeneration and OP and may serve as potential drug targets.

Keywords

Bone marrow mesenchymal stem cells

Differentiation

Hi-C

ATAC-seq

Single nucleotide polymorphisms

Genome-wide association studies

© 2023 Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, and Genetics Society of China. Published by Elsevier Limited and Science Press.

留言 (0)

沒有登入
gif