Electric field effects on neuronal input–output relationship by regulating NMDA spikes

Akiyama H, Shimizu Y, Miyakawa H, Inoue M (2011) Extracellular DC electric fields induce nonuniform membrane polarization in rat hippocampal CA1 pyramidal neurons. Brain Res 1383:22–35. https://doi.org/10.1016/j.brainres.2011.01.097

Article  CAS  Google Scholar 

Augusto E, Gambino F (2019) Can NMDA spikes dictate computations of local networks and behavior? Front Mol Neurosci 12:238. https://doi.org/10.3389/fnmol.2019.00238

Article  CAS  Google Scholar 

Berzhanskaya J, Chernyy N, Gluckman BJ, Schiff SJ, Ascoli GA (2013) Modulation of hippocampal rhythms by subthreshold electric fields and network topology. J Comput Neurosci 34(3):369–389. https://doi.org/10.1007/s10827-012-0426-4

Article  Google Scholar 

Bikson M, Inoue M, Akiyama H, Deans JK et al (2004) Effects of uniform extracellular DC electric fields on excitability in rat hippocampal slices in vitro. J Physiol 557(1):175–190. https://doi.org/10.1113/jphysiol.2003.055772

Article  CAS  Google Scholar 

Bittner KC, Grienberger C, Vaidya SP, Milstein AD, Suh J et al (2015) Conjunctive input processing drives feature selectivity in hippocampal CA1 neurons. Nat Neurosci 18:1133–1142. https://doi.org/10.1038/nn.4062

Article  CAS  Google Scholar 

Branco T, Clark BA, Häusser M (2010) Dendritic discrimination of temporal input sequences in cortical neurons. Science 329:1671–1675. https://doi.org/10.1126/science.1189664

Article  CAS  Google Scholar 

Cavarretta F, Carnevale NT, Tegolo D (2014) Effects of low frequency electric fields on synaptic integration in hippocampal CA1 pyramidal neurons: implications for power line emissions. Front Cell Neurosci 8:310. https://doi.org/10.3389/fncel.2014.00310

Article  Google Scholar 

Chakraborty D, Truong DQ, Bikson M, Kaphzan H (2018) Neuromodulation of axon terminals. Cereb Cortex 28(8):2789–2794. https://doi.org/10.1093/cercor/bhx158

Article  Google Scholar 

Cichon J, Gan WB (2015) Branch-specific dendritic Ca2+ spikes cause persistent synaptic plasticity. Nature 520:180–185. https://doi.org/10.1038/nature14251

Article  CAS  Google Scholar 

Deans JK, Powell AD, Jefferys JGR (2007) Sensitivity of coherent oscillations in rat hippocampus to AC electric fields. J Physiol 583(2):555–565. https://doi.org/10.1113/jphysiol.2007.137711

Article  CAS  Google Scholar 

Dyhrfjeld-Johnsen J, Morgan RJ, Földy C, Soltesz I (2008) Upregulated H current in hyperexcitable CA1 dendrites after febrile seizures. Front Cell Neurosci 2:2. https://doi.org/10.3389/neuro.03.002.2008

Article  CAS  Google Scholar 

Fan YQ, Wei XL, Yi GS et al (2021) Asymptotic input-output relationship predicts electric field effect on sublinear dendritic integration of AMPA synapses. Neural Comput 33(11):3102–3138. https://doi.org/10.1162/neco_a_01438

Article  Google Scholar 

Gambino F, Pagès S, Kehayas V, Baptista D, Tatti R, Carleton A et al (2014) Sensory-evoked LTP driven by dendritic plateau potentials in vivo. Nature 515:116–119. https://doi.org/10.1038/nature13664

Article  CAS  Google Scholar 

Golding NL, Staff NP, Spruston N (2002) Dendritic spikes as a mechanism for cooperative long-term potentiation. Nature 418:326–331. https://doi.org/10.1038/nature00854

Article  CAS  Google Scholar 

Hao J, Oertner TG (2012) Depolarization gates spine calcium transients and spike-timing-dependent potentiation. Curr Opin Neurobiol 22:509–515. https://doi.org/10.1016/j.conb.2011.10.004

Article  CAS  Google Scholar 

Jackson MP, Rahman A, Lafon B, Kronberg G et al (2016) Animal models of transcranial direct current stimulation: methods and mechanisms. Clin Neurophysiol 127(11):3425–3454. https://doi.org/10.1016/j.clinph.2016.08.016

Article  Google Scholar 

Kronberg G, Bridi M, Abel T, Bikson M, Parra LC (2017) Direct current stimulation modulates LTP and LTD: activity dependence and dendritic effects. Brain Stimul 10(1):51–58. https://doi.org/10.1016/j.brs.2016.10.001

Article  Google Scholar 

Lafon B, Rahman A, Bikson M, Parra LC (2017) Direct current stimulation alters neuronal input/output function. Brain Stimul 10(1):36–45. https://doi.org/10.1016/j.brs.2016.08.014

Article  Google Scholar 

Larkum ME, Nevian T, Sandler M, Polsky A, Schiller J (2009) Synaptic integration in tuft dendrites of layer 5 pyramidal neurons: a new unifying principle. Science 325(5941):756–760. https://doi.org/10.1126/science.1171958

Article  CAS  Google Scholar 

Lavzin M, Rapoport S, Polsky A, Garion L, Schiller J (2012) Nonlinear dendritic processing determines angular tuning of barrel cortex neurons in vivo. Nature 490(7420):397–401. https://doi.org/10.1038/nature11451

Article  CAS  Google Scholar 

Lisman J, Spruston N (2005) Postsynaptic depolarization requirements for LTP and LTD: a critique of spike timing-dependent plasticity. Nat Neurosci 8:839–841. https://doi.org/10.1038/nn0705-839

Article  CAS  Google Scholar 

Major G, Polsky A, Denk W, Schiller J, Tank DW (2008) Spatiotemporally graded NMDA spike/plateau potentials in basal dendrites of neocortical pyramidal neurons. J Neurophysiol 99:2584–2601. https://doi.org/10.1152/jn.00011.2008

Article  CAS  Google Scholar 

Major G, Larkum ME, Schiller J (2013) Active properties of neocortical pyramidal neuron dendrites. Annu Rev Neurosci 36:1–24. https://doi.org/10.1146/annurev-neuro-062111-150343

Article  CAS  Google Scholar 

Morya E, Monte-Silva K, Bikson M, Esmaeilpour Z et al (2019) Beyond the target area: an integrative view of tDCS-induced motor cortex modulation in patients and athletes. J Neuroeng Rehabil 16(1):141. https://doi.org/10.1186/s12984-019-0581-1

Article  Google Scholar 

Nitsche MA, Schauenburg A, Lang N, Liebetanz D, Exner C, Paulus W et al (2003) Facilitation of implicit motor learning by weak transcranial direct current stimulation of the primary motor cortex in the human. J Cogn Neurosci 15(4):619–626. https://doi.org/10.1162/089892903321662994

Article  Google Scholar 

Poleg-Polsky A (2015) Effects of neural morphology and input distribution on synaptic processing by global and focal NMDA-spikes. PLoS ONE 10(10):e0140254. https://doi.org/10.1371/journal.pone.0140254

Article  CAS  Google Scholar 

Poolos NP, Migliore M, Johnston D (2002) Pharmacological upregulation of h channels reduces the excitability of pyramidal neuron dendrites. Nat Neurosci 5(8):767–774. https://doi.org/10.1007/s10827-012-0426-4

Article  CAS  Google Scholar 

Radman T, Su Y, An JH, Bikson M (2007) Spike timing amplifies the effect of electric fields on neurons: implications for endogenous field effects. J Neurosci 27(11):3030–3036. https://doi.org/10.1523/jneurosci.0095-07.2007

Article  CAS  Google Scholar 

Radman T, Ramos RL, Brumberg JC, Bikson M (2009) Role of cortical cell type and morphology in sub- and suprathreshold uniform electric field stimulation. Brain Stimul 2(4):215–228. https://doi.org/10.1016/j.brs.2009.03.007

Article  Google Scholar 

Rahman A, Reato D, Arlotti M, Gasca F et al (2013) Cellular effects of acute direct current stimulation: somatic and synaptic terminal effects. J Physiol 591(10):2563–2578. https://doi.org/10.1113/jphysiol.2012.247171

Article  CAS  Google Scholar 

Sabatini B, Oertner T, Svoboda K (2002) The life cycle of Ca2+ ions in dendritic spines. Neuron 33:439–452. https://doi.org/10.1016/s0896-6273(02)00573-1

Article  CAS  Google Scholar 

Schiller J, Major G, Koester HJ, Schiller Y (2000) NMDA spikes in basal dendrites of cortical pyramidal neurons. Nature 404(6775):285–289. https://doi.org/10.1038/35005094

Article  CAS  Google Scholar 

Simonsmeier BA, Grabner RH, Hein J, Krenz U, Schneider M (2018) Electrical brain stimulation (tES) improves learning more than performance: a meta-analysis. Neurosci Biobehav Rev 84:171–181. https://doi.org/10.1016/j.neubiorev.2017.11.001

Article  Google Scholar 

Sjöström PJ, Häusser M (2006) A cooperative switch determines the sign of synaptic plasticity in distal dendrites of neocortical pyramidal neurons. Neuron 51:227–238. https://doi.org/10.1016/j.neuron.2006.06.017

Article  CAS  Google Scholar 

Tran-Van-Minh A, Cazé RD, Abrahamsson T, Cathala L et al (2015) Contribution of sublinear and supralinear dendritic integration to neuronal computations. Front Cell Neurosci 9:67. https://doi.org/10.3389/fncel.2015.00067

Article  CAS  Google Scholar 

Tsodyks M, Kenet T, Grinvald A, Arieli A (1999) Linking spontaneous activity of single cortical neurons and the underlying functional architecture. Science 286:1943–1946. https://doi.org/10.1126/science

Article  CAS  Google Scholar 

Williams SR, Stuart GJ (2002) Dependence of EPSP efficacy on synapse location in neocortical pyramidal neurons. Science 295(5561):1907–1910. https://doi.org/10.1126/science.1067903

Article  CAS  Google Scholar 

Wu T, Fan J, Lee KS, Li X (2016) Cortical neuron activation induced by electromagnetic stimulation: a quantitative analysis via modelling and simulation. J Comput Neurosci 40:51–64. https://doi.org/10.1007/s10827-015-0585-1

Article  Google Scholar 

Yi GS, Wang J, Deng B, Wei XL (2017) Morphology controls how hippocampal CA1 pyramidal neuron responds to uniform electric fields: a biophysical modeling study. Sci Rep 7(1):3210. https://doi.org/10.1038/s41598-017-03547-6

Article  CAS  Google Scholar 

Yi GS, Wei XL, Wang J, Deng B, Che YQ (2019) Modulations of dendritic Ca2+ spike with weak electric fields in layer 5 pyramidal cells. Neural Netw 110:8–18. https://doi.org/10.1016/j.neunet.2018.10.013

Article  Google Scholar 

留言 (0)

沒有登入
gif