Chitosan–PEGHuman PBMCNoneYesIn vitro glioblastoma cells
9898.
C.-T. Tsao,
F. M. Kievit,
A. Ravanpay,
A. E. Erickson,
M. C. Jensen,
R. G. Ellenbogen et al., “
Thermoreversible poly(ethylene glycol)-g-chitosan hydrogel as a therapeutic T lymphocyte depot for localized glioblastoma immunotherapy,” Biomacromolecules
15(7), 2656–2662 (2014).
https://doi.org/10.1021/bm500502nChitosan–PEGHuman CAR-T cellsSelf-expression of IL-15YesHuman retinoblastoma
9999.
K. Wang,
Y. Chen,
S. Ahn,
M. Zheng,
E. Landoni,
G. Dotti et al., “
GD2-specific CAR T cells encapsulated in an injectable hydrogel control retinoblastoma and preserve vision,” Nat. Cancer
1(10), 990–997 (2020).
https://doi.org/10.1038/s43018-020-00119-yElimination of tumors and 100% survival with gel-delivered IL-15 CARPCL–PEG–PPG copolymerHuman CD4+ T cellsNoneYesHuman CD4+ T cell survival over 5 days
100100.
K. Brewer,
B. Gundsambuu,
P. Facal Marina,
S. C. Barry, and
A. Blencowe, “
Thermoresponsive poly(ε-caprolactone)-poly(ethylene/propylene glycol) copolymers as injectable hydrogels for cell therapies,” Polymers
12(2), 367 (2020).
https://doi.org/10.3390/polym12020367PEG–heparinHuman CD4+ T cellsCCL21YesIncreased human CD4+ T cell proliferation
101101.
E. Pérez del Río,
F. Santos,
X. Rodriguez Rodriguez,
M. Martínez-Miguel,
R. Roca-Pinilla,
A. Arís et al., “
CCL21-loaded 3D hydrogels for T cell expansion and differentiation,” Biomaterials
259, 120313 (2020).
https://doi.org/10.1016/j.biomaterials.2020.120313PEGHuman CD3+ T cellsNoneYesProliferation upon restimulation of escaped T cells
102102.
J. Yan,
B. Gundsambuu,
M. Krasowska,
K. Platts,
P. Facal Marina,
C. Gerber et al., “
Injectable Diels–Alder cycloaddition hydrogels with tuneable gelation, stiffness and degradation for the sustained release of T-lymphocytes,” J. Mater. Chem. B.
10, 3329 (2022).
https://doi.org/10.1039/D2TB00274DChitosanHuman PBMC and TILNoneYesIn vitro renal cancer, breast cancer and melanoma
103103.
A. Monette,
C. Ceccaldi,
E. Assaad,
S. Lerouge, and
R. Lapointe, “
Chitosan thermogels for local expansion and delivery of tumor-specific T lymphocytes towards enhanced cancer immunotherapies,” Biomaterials
75, 237–249 (2016).
https://doi.org/10.1016/j.biomaterials.2015.10.021Polyisocyanopeptide (PIC) + GRGDS peptideHuman T cells, DC and NK, mouse T cellsNoneYesMigration in mice in vivo without tumors
104104.
J. Weiden,
D. Voerman,
Y. Dölen,
R. K. Das,
A. van Duffelen,
R. Hammink et al., “
Injectable biomimetic hydrogels as tools for efficient T cell expansion and delivery,” Front. Immunol.
9, 2798 (2018).
https://doi.org/10.3389/fimmu.2018.02798Hyaluronic acidHuman CAR-T cellsNoneYesIn vitro glioma cell line
105105.
A. F. Atik,
C. M. Suryadevara,
R. M. Schweller,
J. L. West,
P. Healy,
J. E. Herndon Ii et al., “
Hyaluronic acid based low viscosity hydrogel as a novel carrier for convection enhanced delivery of CAR T cells,” J. Clin. Neurosci.
56, 163–168 (2018).
https://doi.org/10.1016/j.jocn.2018.06.005Alginate + GFOGER collagen-like peptideHuman CAR-T cellsIL-15 agonist, CD137, CD28, CD3NoMouse breast cancer resection model
106106.
S. B. Stephan,
A. M. Taber,
I. Jileaeva,
E. P. Pegues,
C. L. Sentman, and
M. T. Stephan, “
Biopolymer implants enhance the efficacy of adoptive T cell therapy,” Nat. Biotechnol.
33(1), 97–101 (2015).
https://doi.org/10.1038/nbt.3104Regression in 60% of treated mice vs 0% survival in untreated miceAlginate + GFOGER collagen-like peptideHuman CAR-T cellsIL-15 agonist, CD137, CD28, CD3, STING agonistNoMouse pancreatic cancer and melanoma models
107107.
T. T. Smith,
H. F. Moffett,
S. B. Stephan,
C. F. Opel,
A. G. Dumigan,
X. Jiang et al., “
Biopolymers codelivering engineered T cells and STING agonists can eliminate heterogeneous tumors,” J. Clin. Invest.
127(6), 2176–2191 (2017).
https://doi.org/10.1172/JCI87624Complete pancreatic tumor elimination in 40% of treated mice, with persistent immunity on tumor rechallenge.Fibrin-coated NitinolHuman CAR-T cellsIL-15 agonist, CD137, CD28, CD3NoMouse ovarian cancer model
108108.
M. E. Coon,
S. B. Stephan,
V. Gupta,
C. P. Kealey, and
M. T. Stephan, “
Nitinol thin films functionalized with CAR-T cells for the treatment of solid tumours,” Nat. Biomed. Eng.
4, 195–206 (2019).
https://doi.org/10.1038/s41551-019-0486-02.7-fold survival increase with CAR-T-loaded Nitinol film vs untreatedFibrinMurine DCNoneYesMouse lung cancer model
109109.
V. Verma,
Y. Kim,
M.-C. Lee,
J.-T. Lee,
S. Cho,
I.-K. Park et al., “
Activated dendritic cells delivered in tissue compatible biomatrices induce in-situ anti-tumor CTL responses leading to tumor regression,” Oncotarget
7(26), 39894–39906 (2016).
https://doi.org/10.18632/oncotarget.9529Encapsulated DC treatment more effective than non-encapsulatedRADA16 peptideMurine DCTumor antigens, anti-PD-1NoMouse lymphoma model
110110.
P. Yang,
H. Song,
Y. Qin,
P. Huang,
C. Zhang,
D. Kong et al., “
Engineering dendritic-cell-based vaccines and PD-1 blockade in self-assembled peptide nanofibrous hydrogel to amplify antitumor T-cell immunity,” Nano Lett.
18(7), 4377–4385 (2018).
https://doi.org/10.1021/acs.nanolett.8b01406Survival improvement with gel-encapsulated DC vs untreated miceα-CD/PEGMurine DCDOX, CpG, B16 tumor cellsYesMouse melanoma model
111111.
A. Yang,
X. Dong,
Y. Bai,
S. Sheng,
Y. Zhang,
T. Liu et al., “
Doxorubicin/CpG self-assembled nanoparticles prodrug and dendritic cells co-laden hydrogel for cancer chemo-assisted immunotherapy,” Chem. Eng. J.
416, 129192 (2021).
https://doi.org/10.1016/j.cej.2021.129192,
112112.
A. Yang,
Y. Bai,
X. Dong,
T. Ma,
D. Zhu,
L. Mei et al., “
Hydrogel/nanoadjuvant-mediated combined cell vaccines for cancer immunotherapy,” Acta Biomater.
133, 257–267 (2021).
https://doi.org/10.1016/j.actbio.2021.08.014Significant survival improvement with gel-encapsulated DC with CpG + B16 vs single treatmentsGelatin-hydroxyphenyl propionic acidMurine DCOVYesMouse lung cancer model
113113.
E. Oh,
J.-E. Oh,
J. Hong,
Y. Chung,
Y. Lee,
K. D. Park et al., “
Optimized biodegradable polymeric reservoir-mediated local and sustained co-delivery of dendritic cells and oncolytic adenovirus co-expressing IL-12 and GM-CSF for cancer immunotherapy,” J. Controlled Release
259, 115–127 (2017).
https://doi.org/10.1016/j.jconrel.2017.03.028Increased survival compared to single treatments of DC/OVHyaluronic acidHuman CAR NK cellsNoneNoMouse leukemia and breast cancer models
114114.
Y. H. Ahn,
L. Ren,
S. M. Kim,
S.-H. Seo,
C.-R. Jung,
D. S. Kim et al., “
A three-dimensional hyaluronic acid-based niche enhances the therapeutic efficacy of human natural killer cell-based cancer immunotherapy,” Biomaterials
247, 119960 (2020).
https://doi.org/10.1016/j.biomaterials.2020.119960Significant survival improvement with gel-encapsulated CAR NK vs non-encapsulated NKAlginate microspheresHuman CAR-T cellsIL-15, hemoglobinYesMouse renal and ovarian cancer models
115115.
Z. Luo,
Z. Liu,
Z. Liang,
J. Pan,
J. Xu,
J. Dong et al., “
Injectable porous microchips with oxygen reservoirs and an immune-niche enhance the efficacy of CAR T cell therapy in solid tumors,” ACS Appl. Mater. Interfaces
12(51), 56712–56722 (2020).
https://doi.org/10.1021/acsami.0c15239Greatly improved mouse survival with alginate-encapsulated CAR-T cells compared to untreated miceFibrinHuman CAR-T cellsNoneNoMouse lymphoma and glioma models
116116.
E. A. Ogunnaike,
A. Valdivia,
M. Yazdimamaghani,
E. Leon,
S. Nandi,
H. Hudson et al., “
Fibrin gel enhances the antitumor effects of chimeric antigen receptor T cells in glioblastoma,” Sci. Adv.
7(41), eabg5841 (2021).
https://doi.org/10.1126/sciadv.abg5841Significantly improved mouse survival with fibrin-encapsulated CAR-T cells compared to mice treated with non-encapsulated CAR-T cellsMethacrylated hyaluronic acidHuman CAR-T cellsIL-15 nanoparticles, anti-PD-L1 plateletsNoMouse model of human melanoma
117117.
Q. Hu,
H. Li,
E. Archibong,
Q. Chen,
H. Ruan,
S. Ahn et al., “
Inhibition of post-surgery tumour recurrence via a hydrogel releasing CAR-T cells and anti-PDL1-conjugated platelets,” Nat. Biomed. Eng.
5(9), 1038–1047 (2021).
https://doi.org/10.1038/s41551-021-00712-1Extensive tumor elimination with CAR + IL-15 + anti-PD-L1AlginateMonocytesTumor antigens, anti-PD-1Yes
Mouse breast cancer modelSignificant preventative and therapeutic anti-tumor effects
118118.
Y. Tian,
C. Xu,
J. Feng,
Y. Huangfu,
K. Wang, and
Z.-L. Zhang, “
Personalized gel-droplet monocyte vaccines for cancer immunotherapy,” Lab Chip
21(22), 4414–4426 (2021).
https://doi.org/10.1039/D1LC00646K
留言 (0)