Associations of fertility parameters with fatty acids and DNA methylation in Mexican women undergoing in vitro fertilization

Rogers J, Mitchell GW. The relation of obesity to menstrual disturbances. N Engl J Med. 1952;247:53–5.

Article  CAS  PubMed  Google Scholar 

Sermondade N, Huberlant S, Bourhis-Lefebvre V, Arbo E, Gallot V, Colombani M, et al. Female obesity is negatively associated with live birth rate following IVF: a systematic review and meta-analysis. Hum Reprod Update. 2019;25:439–51.

Article  CAS  PubMed  Google Scholar 

Sciorio R, Bellaminutti S, Tramontano L, Esteves SC. Impact of obesity on medically assisted reproductive treatments. Zygote. 2022;30:431–9.

Article  CAS  PubMed  Google Scholar 

Ravisankar S, Ting AY, Murphy MJ, Redmayne N, Wang D, McArthur CA, et al. Short-term Western-style diet negatively impacts reproductive outcomes in primates. JCI Insight. 2021;6:138312.

Article  PubMed  Google Scholar 

Hou Y-J, Zhu C-C, Duan X, Liu H-L, Wang Q, Sun S-C. Both diet and gene mutation induced obesity affect oocyte quality in mice. Sci Rep. 2016;6:18858.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kannan S, Bhaskaran RS. Sustained obesity reduces litter size by decreasing proteins regulating folliculogenesis and ovulation in rats—a cafeteria diet model. Biochem Biophys Res Commun. 2019;519:475–80.

Article  CAS  PubMed  Google Scholar 

Yuan P, Yang C, Ren Y, Yan J, Nie Y, Yan L, et al. A novel homozygous mutation of phospholipase C zeta leading to defective human oocyte activation and fertilization failure. Hum Reprod. 2020;35:977–85.

Article  CAS  PubMed  Google Scholar 

Valckx SDM, Arias-Alvarez M, De Pauw I, Fievez V, Vlaeminck B, Fransen E, et al. Fatty acid composition of the follicular fluid of normal weight, overweight and obese women undergoing assisted reproductive treatment: a descriptive cross-sectional study. Reprod Biol Endocrinol. 2014;12:13.

Article  PubMed  PubMed Central  Google Scholar 

Niu Z, Lin N, Gu R, Sun Y, Feng Y. Associations between insulin resistance, free fatty acids, and oocyte quality in polycystic ovary syndrome during in vitro fertilization. J Clin Endocrinol Metab. 2014;99:E2269–76.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Matorras R, Exposito A, Ferrando M, Mendoza R, Larreategui Z, Laínz L, et al. Oocytes of women who are obese or overweight have lower levels of n-3 polyunsaturated fatty acids compared with oocytes of women with normal weight. Fertil Steril. 2020;113:53–61.

Article  CAS  PubMed  Google Scholar 

Shaaker M, Rahimipour A, Nouri M, Khanaki K, Darabi M, Farzadi L, et al. Fatty acid composition of human follicular fluid phospholipids and fertilization rate in assisted reproductive techniques. Iran Biomed J. 2012;16:162–8.

CAS  PubMed  PubMed Central  Google Scholar 

Mirabi P, Chaichi MJ, Esmaeilzadeh S, Ali Jorsaraei SG, Bijani A, Ehsani M, et al. The role of fatty acids on ICSI outcomes: a prospective cohort study. Lipids Health Dis. 2017;16:18.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ciepiela P, Bączkowski T, Drozd A, Kazienko A, Stachowska E, Kurzawa R. Arachidonic and linoleic acid derivatives impact oocyte ICSI fertilization—a prospective analysis of follicular fluid and a matched oocyte in a ‘one follicle—One retrieved oocyte—One resulting embryo’ investigational setting. PLoS One. 2015;10:e0119087.

Article  PubMed  PubMed Central  Google Scholar 

Ruiz-Sanz J-I, Pérez-Ruiz I, Meijide S, Ferrando M, Larreategui Z, Ruiz-Larrea M-B. Lower follicular n-3 polyunsaturated fatty acid levels are associated with a better response to ovarian stimulation. J Assist Reprod Genet. 2019;36:473–82.

Article  PubMed  Google Scholar 

Chiu Y-H, Karmon AE, Gaskins AJ, Arvizu M, Williams PL, Souter I, et al. Serum omega-3 fatty acids and treatment outcomes among women undergoing assisted reproduction. Hum Reprod. 2018;33:156–65.

Article  CAS  PubMed  Google Scholar 

Stoffel W, Schmidt-Soltau I, Binczek E, Thomas A, Thevis M, Wegner I. Dietary ω3-and ω6-polyunsaturated fatty acids reconstitute fertility of juvenile and adult FADS2-deficient female and male mice. Mol Metab. 2020;36:100974.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Malott KF, Reshel S, Ortiz L, Luderer U. Glutathione deficiency decreases lipid droplet stores and increases reactive oxygen species in mouse oocytes. Biol Reprod. 2022;106:1218–31.

Article  PubMed  Google Scholar 

Li Q, Guo S, Yang C, Liu X, Chen X, He J, et al. High-fat diet-induced obesity primes fatty acid β-oxidation impairment and consequent ovarian dysfunction during early pregnancy. Ann Transl Med. 2021;9:887.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Leung ZCL, Abu Rafea B, Watson AJ, Betts DH. Free fatty acid treatment of mouse preimplantation embryos demonstrates contrasting effects of palmitic acid and oleic acid on autophagy. Am J Physiol Cell Physiol. 2022;322:C833–C848.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Forman BM, Chen J, Evans RM. Hypolipidemic drugs, polyunsaturated fatty acids, and eicosanoids are ligands for peroxisome proliferator-activated receptors alpha and delta. Proc Natl Acad Sci USA. 1997;94:4312–7.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hall E, Volkov P, Dayeh T, Bacos K, Rönn T, Nitert MD, et al. Effects of palmitate on genome-wide mRNA expression and DNA methylation patterns in human pancreatic islets. BMC Med. 2014;12:103.

Article  PubMed  PubMed Central  Google Scholar 

Silva-Martínez GA, Rodríguez-Ríos D, Alvarado-Caudillo Y, Vaquero A, Esteller M, Carmona FJ, et al. Arachidonic and oleic acid exert distinct effects on the DNA methylome. Epigenetics. 2016;11:321–34.

Article  PubMed  PubMed Central  Google Scholar 

Pérez-Mojica JE, Lillycrop KA, Cooper C, Calder PC, Burdge GC. Docosahexaenoic acid and oleic acid induce altered DNA methylation of individual CpG loci in Jurkat T cells. Prostaglandins Leukot Essent Fat Acids. 2020;158:102128.

Article  Google Scholar 

Ceccarelli V, Nocentini G, Billi M, Racanicchi S, Riccardi C, Roberti R, et al. Eicosapentaenoic acid activates RAS/ERK/C/EBPβ pathway through H-Ras intron 1 CpG island demethylation in U937 leukemia cells. PLoS One. 2014;9:e85025.

Article  PubMed  PubMed Central  Google Scholar 

Barrès R, Osler ME, Yan J, Rune A, Fritz T, Caidahl K, et al. Non-CpG methylation of the PGC-1alpha promoter through DNMT3B controls mitochondrial density. Cell Metab. 2009;10:189–98.

Article  PubMed  Google Scholar 

Ramaiyan B, Talahalli RR. Dietary unsaturated fatty acids modulate maternal dyslipidemia-induced dna methylation and histone acetylation in placenta and fetal liver in rats. Lipids. 2018;53:581–8.

Article  CAS  PubMed  Google Scholar 

Perfilyev A, Dahlman I, Gillberg L, Rosqvist F, Iggman D, Volkov P, et al. Impact of polyunsaturated and saturated fat overfeeding on the DNA-methylation pattern in human adipose tissue: a randomized controlled trial. Am J Clin Nutr. 2017;105:991–1000.

Article  CAS  PubMed  Google Scholar 

de la Rocha C, Pérez-Mojica E, León SZ, Cervantes-Paz B, Tristán-Flores FE, Rodríguez-Ríos D, et al. Associations between whole peripheral blood fatty acids and DNA methylation in humans. Sci Rep. 2016;6:25867.

Article  PubMed  PubMed Central  Google Scholar 

Pescador-Tapia A, Silva-Martínez GA, Fragoso-Bargas N, Rodríguez-Ríos D, Esteller M, Moran S, et al. Distinct associations of BMI and fatty acids with DNA methylation in fasting and postprandial states in men. Front Genet. 2021;12:665769.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Karimi M, Vedin I, Freund Levi Y, Basun H, Faxén Irving G, Eriksdotter M, et al. DHA-rich n–3 fatty acid supplementation decreases DNA methylation in blood leukocytes: the OmegAD study. Am J Clin Nutr. 2017;106:1157–65.

Article  CAS  PubMed  Google Scholar 

Bouwens M, van de Rest O, Dellschaft N, Bromhaar MG, de Groot LC, Geleijnse JM, et al. Fish-oil supplementation induces antiinflammatory gene expression profiles in human blood mononuclear cells. Am J Clin Nutr. 2009;90:415–24.

Article  CAS  PubMed  Google Scholar 

Niculescu MD, Lupu DS, Craciunescu CN. Perinatal manipulation of α-linolenic acid intake induces epigenetic changes in maternal and offspring livers. FASEB J. 2013;27:350–8.

Article  CAS  PubMed  Google Scholar 

de la Rocha C, Rodríguez-Ríos D, Ramírez-Chávez E, Molina-Torres J, de Jesús Flores-Sierra J, Orozco-Castellanos LM, et al. Cumulative metabolic and epigenetic effects of paternal and/or maternal supplementation with arachidonic acid across three consecutive generations in mice. Cells. 2022;11:1057.

Article  PubMed  PubMed Central  Google Scholar 

Barbieri B, Alvelius G, Papadogiannakis N. Lower arachidonic acid content and preferential beta-oxidation of arachidonic acid over palmitic acid in tumour cell lines as compared to normal lymphoid cells. Biochem Mol Biol Int Pages. 1998;45:1105–12.

CAS  Google Scholar 

Keating ST, El-Osta A. Epigenetics and metabolism. Circ Res. 2015;116:715–36.

Article  CAS  PubMed 

留言 (0)

沒有登入
gif