How to write statistical analysis section in medical research

Although biostatistical inputs are critical for the entire research study (online supplemental table 2), biostatistical consultations were mostly used for statistical analyses only15. Even though the conduct of statistical analysis mismatched with the study objective and DGP was identified as the major problem in articles submitted to high-impact medical journals.16 In addition, multivariable analyses were often inappropriately conducted and reported in published studies.17 18 In light of these statistical errors, we describe the reporting of the following components in the statistical analysis section of the study.

Step 1: specify study objective type and outcomes (overall approach)

The study objective type provides the role of important variables for a specified outcome in statistical analyses and the overall approach of the model building and model reporting steps in a study. In the statistical framework, the problems are classified into descriptive and inferential/analytical/confirmatory objectives. In the epidemiological framework, the analytical and prognostic problems are broadly classified into association, explanatory, and predictive objectives.19 These study objectives (figure 1) may be classified into six categories: (1) exploratory, (2) association, (3) causal, (4) intervention, (5) prediction and (6) clinical decision models in medical research.20

Figure 1Figure 1Figure 1

Comparative assessments of developing and reporting of study objective types and models. Association measures include odds ratio, risk ratio, or hazard ratio. AUC, area under the curve; C, confounder; CI, confidence interval; E, exposure; HbA1C: hemoglobin A1c; M, mediator; MFT, model fit test; MST, model specification test; PI, predictive interval; R2, coefficient of determinant; X, independent variable; Y, outcome.

The exploratory objective type is a specific type of determinant study and is commonly known as risk factors or correlates study in medical research. In an exploratory study, all covariates are considered equally important for the outcome of interest in the study. The goal of the exploratory study is to present the results of a model which gives higher accuracy after satisfying all model-related assumptions. In the association study, the investigator identifies predefined exposures of interest for the outcome, and variables other than exposures are also important for the interpretation and considered as covariates. The goal of an association study is to present the adjusted association of exposure with outcome.20 In the causal objective study, the investigator is interested in determining the impact of exposure(s) on outcome using the conceptual framework. In this study objective, all variables should have a predefined role (exposures, confounders, mediators, covariates, and predictors) in a conceptual framework. A study with a causal objective is known as an explanatory or a confirmatory study in medical research. The goal is to present the direct or indirect effects of exposure(s) on an outcome after assessing the model’s fitness in the conceptual framework.19 21 The objective of an interventional study is to determine the effect of an intervention on outcomes and is often known as randomized or non-randomized clinical trials in medical research. In the intervention objective model, all variables other than the intervention are treated as nuisance variables for primary analyses. The goal is to present the direct effect of the intervention on the outcomes by eliminating biases.22–24 In the predictive study, the goal is to determine an optimum set of variables that can predict the outcome, particularly in external settings. The clinical decision models are a special case of prognostic models in which high dimensional data at various levels are used for risk stratification, classification, and prediction. In this model, all variables are considered input features. The goal is to present a decision tool that has high accuracy in training, testing, and validation data sets.20 25 Biostatisticians or applied researchers should properly discuss the intention of the study objective type before proceeding with statistical analyses. In addition, it would be a good idea to prepare a conceptual model framework regardless of study objective type to understand study concepts.

Examples

A study26 showed a favorable effect of the beta-blocker intervention on survival outcome in patients with advanced human epidermal growth factor receptor (HER2)-negative breast cancer without adjusting for all the potential confounding effects (age or menopausal status and Eastern Cooperative Oncology Performance Status) in primary analyses or validation analyses or using a propensity score-adjusted analysis, which is an EBB preferred method for analyzing non-randomized studies.27 Similarly, another study had the goal of developing a predictive model for prediction of Alzheimer’s disease progression.28 However, this study did not internally or externally validate the performance of the model as per the requirement of a predictive objective study. In another study,29 investigators were interested in determining an association between metabolic syndrome and hepatitis C virus. However, the authors did not clearly specify the outcome in the analysis and produced conflicting associations with different analyses.30 Thus, the outcome should be clearly specified as per the study objective type.

Step 2: specify effect size measure according to study design (interpretation and practical value)

The study design provides information on the selection of study participants and the process of data collection conditioned on either exposure or outcome (figure 2). The appropriate use of effect size measure, tabular presentation of results, and the level of evidence are mostly determined by the study design.31 32 In cohort or clinical trial study designs, the participants are selected based on exposure status and are followed up for the development of the outcome. These study designs can provide multiple outcomes, produce incidence or incidence density, and are preferred to be analyzed with risk ratio (RR) or hazards models. In a case–control study, the selection of participants is conditioned on outcome status. This type of study can have only one outcome and is preferred to be analyzed with an odds ratio (OR) model. In a cross-sectional study design, there is no selection restriction on outcomes or exposures. All data are collected simultaneously and can be analyzed with a prevalence ratio model, which is mathematically equivalent to the RR model.33 The reporting of effect size measure also depends on the study objective type. For example, predictive models typically require reporting of regression coefficients or weight of variables in the model instead of association measures, which are required in other objective types. There are agreements and disagreements between OR and RR measures. Due to the constancy and symmetricity properties of OR, some researchers prefer to use OR in studies with common events. Similarly, the collapsibility and interpretability properties of RR make it more appealing to use in studies with common events.34 To avoid variable practice and interpretation issues with OR, it is recommended to use RR models in all studies except for case–control and nested case–control studies, where OR approximates RR and thus OR models should be used. Otherwise, investigators may report sufficient data to compute any ratio measure. Biostatisticians should educate investigators on the proper interpretation of ratio measures in the light of study design and their reporting.34 35

Figure 2Figure 2Figure 2

Effect size according to study design.

Examples

Investigators sometimes either inappropriately label their study design36 37 or report effect size measures not aligned with the study design,38 39 leading to difficulty in results interpretation and evaluation of the level of evidence. The proper labeling of study design and the appropriate use of effect size measure have substantial implications for results interpretation, including the conduct of systematic review and meta-analysis.40 A study31 reviewed the frequency of reporting OR instead of RR in cohort studies and randomized clinical trials (RCTs) and found that one-third of the cohort studies used an OR model, whereas 5% of RCTs used an OR model. The majority of estimated ORs from these studies had a 20% or higher deviation from the corresponding RR.

Step 3: specify study hypothesis, reporting of p values, and interval estimates (interpretation and decision)

The clinical hypothesis provides information for evaluating formal claims specified in the study objectives, while the statistical hypothesis provides information about the population parameters/statistics being used to test the formal claims. The inference about the study hypothesis is typically measured by p value and confidence interval (CI). A smaller p value indicates that the data support against the null hypothesis. Since the p value is a conditional probability, it can never tell about the acceptance or rejection of the null hypothesis. Therefore, multiple alternative strategies of p values have been proposed to strengthen the credibility of conclusions.41 42 Adaption of these alternative strategies is only needed in the explanatory objective studies. Although exact p values are recommended to be reported in research studies, p values do not provide any information about the effect size. Compared with p values, the CI provides a confidence range of the effect size that contains the true effect size if the study were repeated and can be used to determine whether the results are statistically significant or not.43 Both p value and 95% CI provide complementary information and thus need to be specified in the statistical analysis section.24 44

Researchers often test one or more comparisons or hypotheses. Accordingly, the side and the level of significance for considering results to be statistically significant may change. Furthermore, studies may include more than one primary outcome that requires an adjustment in the level of significance for multiplicity. All studies should provide the interval estimate of the effect size/regression coefficient in the primary analyses. Since the interpretation of data analysis depends on the study hypothesis, researchers are required to specify the level of significance along with the side (one-sided or two-sided) of the p value in the test for considering statistically significant results, adjustment of the level of significance due to multiple comparisons or multiplicity, and reporting of interval estimates of the effect size in the statistical analysis section.45

Examples

A study46 showed a significant effect of fluoxetine on relapse rates in obsessive-compulsive disorder based on a one-sided p value of 0.04. Clearly, there was no reason for using a one-sided p value as opposed to a two-sided p value. A review of the appropriate use of multiple test correction methods in multiarm clinical trials published in major medical journals in 2012 identified over 50% of the articles did not perform multiple-testing correction.47 Similar to controlling a familywise error rate due to multiple comparisons, adjustment of the false discovery rate is also critical in studies involving multiple related outcomes. A review of RCTs for depression between 2007 and 2008 from six journals reported that only limited studies (5.8%) accounted for multiplicity in the analyses due to multiple outcomes.48

Step 4: account for DGP in the statistical analysis (accuracy)

The study design also requires the specification of the selection of participants and outcome measurement processes in different design settings. We referred to this specific design feature as DGP. Understanding DGP helps in determining appropriate modeling of outcome distribution in statistical analyses and setting up model premises and units of analysis.4 DGP (figure 3) involves information on data generation and data measures, including the number of measurements after random selection, complex selection, consecutive selection, pragmatic selection, or systematic selection. Specifically, DGP depends on a sampling setting (participants are selected using survey sampling methods and one subject may represent multiple participants in the population), clustered setting (participants are clustered through a recruitment setting or hierarchical setting or multiple hospitals), pragmatic setting (participants are selected through mixed approaches), or systematic review setting (participants are selected from published studies). DGP also depends on the measurements of outcomes in an unpaired setting (measured on one occasion only in independent groups), paired setting (measured on more than one occasion or participants are matched on certain subject characteristics), or mixed setting (measured on more than one occasion but interested in comparing independent groups). It also involves information regarding outcomes or exposure generation processes using quantitative or categorical variables, quantitative values using labs or validated instruments, and self-reported or administered tests yielding a variety of data distributions, including individual distribution, mixed-type distribution, mixed distributions, and latent distributions. Due to different DGPs, study data may include messy or missing data, incomplete/partial measurements, time-varying measurements, surrogate measures, latent measures, imbalances, unknown confounders, instrument variables, correlated responses, various levels of clustering, qualitative data, or mixed data outcomes, competing events, individual and higher-level variables, etc. The performance of statistical analysis, appropriate estimation of standard errors of estimates and subsequently computation of p values, the generalizability of findings, and the graphical display of data rely on DGP. Accounting for DGP in the analyses requires proper communication between investigators and biostatisticians about each aspect of participant selection and data collection, including measurements, occasions of measurements, and instruments used in the research study.

Figure 3Figure 3Figure 3

Common features of the data generation process.

Examples

A study49 compared the intake of fresh fruit and komatsuna juice with the intake of commercial vegetable juice on metabolic parameters in middle-aged men using an RCT. The study was criticized for many reasons, but primarily for incorrect statistical methods not aligned with the study DGP.50 Similarly, another study51 highlighted that 80% of published studies using the Korean National Health and Nutrition Examination Survey did not incorporate survey sampling structure in statistical analyses, producing biased estimates and inappropriate findings. Likewise, another study52 highlighted the need for maintaining methodological standards while analyzing data from the National Inpatient Sample. A systematic review53 identified that over 50% of studies did not specify whether a paired t-test or an unpaired t-test was performed in statistical analysis in the top 25% of physiology journals, indicating poor transparency in reporting of statistical analysis as per the data type. Another study54 also highlighted the data displaying errors not aligned with DGP. As per DGP, delay in treatment initiation of patients with cancer defined from the onset of symptom to treatment initiation should be analyzed into three components: patient/primary delay, secondary delay, and tertiary delay.55 Similarly, the number of cancerous nodes should be analyzed with count data models.56 However, several studies did not analyze such data according to DGP.57 58

Step 5: apply EBB methods specific to study design features and DGP (efficiency and robustness)

The continuous growth in the development of robust statistical methods for dealing with a specific problem produced various methods to analyze specific data types. Since multiple methods are available for handling a specific problem yet with varying performances, heterogeneous practices among applied researchers have been noticed. Variable practices could also be due to a lack of consensus on statistical methods in literature, unawareness, and the unavailability of standardized statistical guidelines.2 5 59 However, it becomes sometimes difficult to differentiate whether a specific method was used due to its robustness, lack of awareness, lack of accessibility of statistical software to apply an alternative appropriate method, intention to produce expected results, or ignorance of model diagnostics. To avoid heterogeneous practices, the selection of statistical methodology and their reporting at each stage of data analysis should be conducted using methods according to EBB practice.5 Since it is hard for applied researchers to optimally select statistical methodology at each step, we encourage investigators to involve biostatisticians at the very early stage in basic, clinical, population, translational, and database research. We also appeal to biostatisticians to develop guidelines, checklists, and educational tools to promote the concept of EBB. As an effort, we developed the statistical analysis and methods in biomedical research (SAMBR) guidelines for applied researchers to use EBB methods for data analysis.5 The EBB practice is essential for applying recent cutting-edge robust methodologies to yield accurate and unbiased results. The efficiency of statistical methodologies depends on the assumptions and DGP. Therefore, investigators may attempt to specify the choice of specific models in the primary analysis as per the EBB.

Examples

Although details of evidence-based preferred methods are provided in the SAMBR checklists for each study design/objective,5 we have presented a simplified version of evidence-based preferred methods for common statistical analysis (online supplemental table 3). Several examples are available in the literature where inefficient methods not according to EBB practice have been used.31 57 60

Step 6: report variable selection method in the multivariable analysis according to study objective type (unbiased)

Multivariable analysis can be used for association, prediction or classification or risk stratification, adjustment, propensity score development, and effect size estimation.61 Some biological, clinical, behavioral, and environmental factors may directly associate or influence the relationship between exposure and outcome. Therefore, almost all health studies require multivariable analyses for accurate and unbiased interpretations of findings (figure 1). Analysts should develop an adjusted model if the sample size permits. It is a misconception that the analysis of RCT does not require adjusted analysis. Analysis of RCT may require adjustment for prognostic variables.23 The foremost step in model building is the entry of variables after finalizing the appropriate parametric or non-parametric regression model. In the exploratory model building process due to no preference of exposures, a backward automated approach after including any variables that are significant at 25% in the unadjusted analysis can be used for variable selection.62 63 In the association model, a manual selection of covariates based on the relevance of the variables should be included in a fully adjusted model.63 In a causal model, clinically guided methods should be used for variable selection and their adjustments.20 In a non-randomized interventional model, efforts should be made to eliminate confounding effects through propensity score methods and the final propensity score-adjusted multivariable model may adjust any prognostic variables, while a randomized study simply should adjust any prognostic variables.27 Maintaining the event per variable (EVR) is important to avoid overfitting in any type of modeling; therefore, screening of variables may be required in some association and explanatory studies, which may be accomplished using a backward stepwise method that needs to be clarified in the statistical analyses.10 In a predictive study, a model with an optimum set of variables producing the highest accuracy should be used. The optimum set of variables may be screened with the random forest method or bootstrap or machine learning methods.64 65 Different methods of variable selection and adjustments may lead to different results. The screening process of variables and their adjustments in the final multivariable model should be clearly mentioned in the statistical analysis section.

Examples

A study66 evaluating the effect of hydroxychloroquine (HDQ) showed unfavorable events (intubation or death) in patients who received HDQ compared with those who did not (hazard ratio (HR): 2.37, 95% CI 1.84 to 3.02) in an unadjusted analysis. However, the propensity score-adjusted analyses as appropriate with the interventional objective model showed no significant association between HDQ use and unfavorable events (HR: 1.04, 95% CI 0.82 to 1.32), which was also confirmed in multivariable and other propensity score-adjusted analyses. This study clearly suggests that results interpretation should be based on a multivariable analysis only in observational studies if feasible. A recent study10 noted that approximately 6% of multivariable analyses based on either logistic or Cox regression used an inappropriate selection method of variables in medical research. This practice was more commonly noted in studies that did not involve an expert biostatistician. Another review61 of 316 articles from high-impact Chinese medical journals revealed that 30.7% of articles did not report the selection of variables in multivariable models. Indeed, this inappropriate practice could have been identified more commonly if classified according to the study objective type.18 In RCTs, it is uncommon to report an adjusted analysis based on prognostic variables, even though an adjusted analysis may produce an efficient estimate compared with an unadjusted analysis. A study assessing the effect of preemptive intervention on development outcomes showed a significant effect of an intervention on reducing autism spectrum disorder symptoms.67 However, this study was criticized by Ware68 for not reporting non-significant results in unadjusted analyses. If possible, unadjusted estimates should also be reported in any study, particularly in RCTs.23 68

Step 7: provide evidence for exploring effect modifiers (applicability)

Any variable that modifies the effect of exposure on the outcome is called an effect modifier or modifier or an interacting variable. Exploring the effect modifiers in multivariable analyses helps in (1) determining the applicability/generalizability of findings in the overall or specific subpopulation, (2) generating ideas for new hypotheses, (3) explaining uninterpretable findings between unadjusted and adjusted analyses, (4) guiding to present combined or separate models for each specific subpopulation, and (5) explaining heterogeneity in treatment effect. Often, investigators present adjusted stratified results according to the presence or absence of an effect modifier. If the exposure interacts with multiple variables statistically or conceptually in the model, then the stratified findings (subgroup) according to each effect modifier may be presented. Otherwise, stratified analysis substantially reduces the power of the study due to the lower sample size in each stratum and may produce significant results by inflating type I error.69 Therefore, a multivariable analysis involving an interaction term as opposed to a stratified analysis may be presented in the presence of an effect modifier.70 Sometimes, a quantitative variable may emerge as a potential effect modifier for exposure and an outcome relationship. In such a situation, the quantitative variable should not be categorized unless a clinically meaningful threshold is not available in the study. In fact, the practice of categorizing quantitative variables should be avoided in the analysis unless a clinically meaningful cut-off is available or a hypothesis requires for it.71 In an exploratory objective type, any possible interaction may be obtained in a study; however, the interpretation should be guided based on clinical implications. Similarly, some objective models may have more than one exposure or intervention and the association of each exposure according to the level of other exposure should be presented through adjusted analyses as suggested in the presence of interaction effects.70

Examples

A review of 428 articles from MEDLINE on the quality of reporting from statistical analyses of three (linear, logistic, and Cox) commonly used regression models reported that only 18.5% of the published articles provided interaction analyses,17 even though interaction analyses can provide a lot of useful information.

Step 8: assessment of assumptions, specifically the distribution of outcome, linearity, multicollinearity, sparsity, and overfitting (reliability)

The assessment and reporting of model diagnostics are important in assessing the efficiency, validity, and usefulness of the model. Model diagnostics include satisfying model-specific assumptions and the assessment of sparsity, linearity, distribution of outcome, multicollinearity, and overfitting.61 72 Model-specific assumptions such as normal residuals, heteroscedasticity and independence of errors in linear regression, proportionality in Cox regression, proportionality odds assumption in ordinal logistic regression, and distribution fit in other types of continuous and count models are required. In addition, sparsity should also be examined prior to selecting an appropriate model. Sparsity indicates many zero observations in the data set.73 In the presence of sparsity, the effect size is difficult to interpret. Except for machine learning models, most of the parametric and semiparametric models require a linear relationship between independent variables and a functional form of an outcome. Linearity should be assessed using a multivariable polynomial in all model objectives.62 Similarly, the appropriate choice of the distribution of outcome is required for model building in all study objective models. Multicollinearity assessment is also useful in all objective models. Assessment of EVR in multivariable analysis can be used to avoid the overfitting issue of a multivariable model.18

Examples

Some review studies highlighted that 73.8%–92% of the articles published in MEDLINE had not assessed the model diagnostics of the multivariable regression models.17 61 72 Contrary to the monotonically, linearly increasing relationship between systolic blood pressure (SBP) and mortality established using the Framingham’s study,74 Port et al 75 reported a non-linear relationship between SBP and all-cause mortality or cardiovascular deaths by reanalysis of the Framingham’s study data set. This study identified a different threshold for treating hypertension, indicating the role of linearity assessment in multivariable models. Although a non-Gaussian distribution model may be required for modeling patient delay outcome data in cancer,55 a study analyzed patient delay data using an ordinary linear regression model.57 An investigation of the development of predictive models and their reporting in medical journals identified that 53% of the articles had fewer EVR than the recommended EVR, indicating over half of the published articles may have an overfitting model.18 Another study76 attempted to identify the anthropometric variables associated with non-insulin-dependent diabetes and found that none of the anthropometric variables were significant after adjusting for waist circumference, age, and sex, indicating the presence of collinearity. A study reported detailed sparse data problems in published studies and potential solutions.73

Step 9: report type of primary and sensitivity analyses (consistency)

Numerous considerations and assumptions are made throughout the research processes that require assessment, evaluation, and validation. Some assumptions, executions, and errors made at the beginning of the study data collection may not be fixable13; however, additional information collected during the study and data processing, including data distribution obtained at the end of the study, may facilitate additional considerations that need to be verified in the statistical analyses. Consistencies in the research findings via modifications in the outcome or exposure definition, study population, accounting for missing data, model-related assumptions, variables and their forms, and accounting for adherence to protocol in the models can be evaluated and reported in research studies using sensitivity analyses.77 The purpose and type of supporting analyses need to be specified clearly in the statistical analyses to differentiate the main findings from the supporting findings. Sensitivity analyses are different from secondary or interim or subgroup analyses.78 Data analyses for secondary outcomes are often referred to as secondary analyses, while data analyses of an ongoing study are called interim analyses and data analyses according to groups based on patient characteristics are known as subgroup analyses.

Examples

Almost all studies require some form of sensitivity analysis to validate the findings under different conditions. However, it is often underutilized in medical journals. Only 18%–20.3% of studies reported some forms of sensitivity analyses.77 78 A review of nutritional trials from high-quality journals reflected that 17% of the conclusions were reported inappropriately using findings from sensitivity analyses not based on the primary/main analyses.77

Step 10: provide methods for summarizing, displaying, and interpreting data (transparency and usability)

Data presentation includes data summary, data display, and data from statistical model analyses. The primary purpose of the data summary is to understand the distribution of outcome status and other characteristics in the total sample and by primary exposure status or outcome status. Column-wise data presentation should be preferred according to exposure status in all study designs, while row-wise data presentation for the outcome should be preferred in all study designs except for a case–control study.24 32 Summary statistics should be used to provide maximum information on data distribution aligned with DGP and variable type. The purpose of results presentation primarily from regression analyses or statistical models is to convey results interpretation and implications of findings. The results should be presented according to the study objective type. Accordingly, the reporting of unadjusted and adjusted associations of each factor with the outcome may be preferred in the determinant objective model, while unadjusted and adjusted effects of primary exposure on the outcome may be preferred in the explanatory objective model. In prognostic models, the final predictive models may be presented in such a way that users can use models to predict an outcome. In the exploratory objective model, a final multivariable model should be reported with R2 or area under the curve (AUC). In the association and interventional models, the assessment of internal validation is critically important through various sensitivity and validation analyses. A model with better fit indices (in terms of R2 or AUC, Akaike information criterion, Bayesian information criterion, fit index, root mean square error) should be finalized and reported in the causal model objective study. In the predictive objective type, the model performance in terms of R2 or AUC in training and validation data sets needs to be reported (figure 1).20 21 There are multiple purposes of data display, including data distribution using bar diagram or histogram or frequency polygons or box plots, comparisons using cluster bar diagram or scatter dot plot or stacked bar diagram or Kaplan-Meier plot, correlation or model assessment using scatter plot or scatter matrix, clustering or pattern using heatmap or line plots, the effect of predictors with fitted models using marginsplot, and comparative evaluation of effect sizes from regression models using forest plot. Although the key purpose of data display is to highlight critical issues or findings in the study, data display should essentially follow DGP and variable types and should be user-friendly.54 79 Data interpretation heavily relies on the effect size measure along with study design and specified hypotheses. Sometimes, variables require standardization for descriptive comparison of effect sizes among exposures or interpreting small effect size, or centralization for interpreting intercept or avoiding collinearity due to interaction terms, or transformation for achieving model-related assumptions.80 Appropriate methods of data reporting and interpretation aligned with study design, study hypothesis, and effect size measure should be specified in the statistical analysis section of research studies.

Examples

Published articles from reputed journals inappropriately summarized a categorized variable with mean and range,81 summarized a highly skewed variable with mean and standard deviation,57 and treated a categorized variable as a continuous variable in regression analyses.82 Similarly, numerous examples from published studies reporting inappropriate graphical display or inappropriate interpretation of data not aligned with DGP or variable types are illustrated in a book published by Bland and Peacock.83 84 A study used qualitative data on MRI but inappropriately presented with a Box-Whisker plot.81 Another study reported unusually high OR for an association between high breast parenchymal enhancement and breast cancer in both premenopausal and postmenopausal women.85 This reporting makes suspicious findings and may include sparse data bias.86 A poor tabular presentation without proper scaling or standardization of a variable, missing CI for some variables, missing unit and sample size, and inconsistent reporting of decimal places could be easily noticed in table 4 of a published study.29 Some published predictive models87 do not report intercept or baseline survival estimates to use their predictive models in clinical use. Although a direct comparison of effect sizes obtained from the same model may be avoided if the units are different among variables,35 a study had an objective to compare effect sizes across variables but the authors performed comparisons without standardization of variables or using statistical tests.88

留言 (0)

沒有登入
gif