Cardiopulmonary Exercise Testing in Pulmonary Arterial Hypertension

Sun X.G. Hansen J.E. Oudiz R.J. et al.

Exercise pathophysiology in patients with primary pulmonary hypertension.

Circulation. 2001; 104: 429-435View in Article Scopus (472) PubMed Crossref Google Scholar

ATS/ACCP statement on cardiopulmonary exercise testing.

Am J Respir Crit Care Med. 2003; 167: 211-277View in Article Scopus (2350) PubMed Crossref Google ScholarSimonneau G. Montani D. Celermajer D.S. et al.

Haemodynamic definitions and updated clinical classification of pulmonary hypertension.

Eur Respir J. 2019; 53: 1801913View in Article Scopus (1674) PubMed Crossref Google ScholarHassoun P.M.

Pulmonary arterial hypertension.

N Engl J Med. 2021; 385: 2361-2376View in Article Scopus (50) PubMed Crossref Google ScholarD’Alonzo G.E. Gianotti L.A. Pohil R.L. et al.

Comparison of progressive exercise performance of normal subjects and patients with primary pulmonary hypertension.

Chest. 1987; 92: 57-62View in Article Scopus (96) PubMed Abstract Full Text Full Text PDF Google ScholarLaveneziana P. Weatherald J.

Pulmonary vascular disease and cardiopulmonary exercise testing.

Front Physiol. 2020; 11: 964View in Article Scopus (9) Crossref Google ScholarWeatherald J. Farina S. Bruno N. et al.

Cardiopulmonary exercise testing in pulmonary hypertension.

Ann ATS. 2017; 14: S84-S92View in Article Scopus (45) Crossref Google ScholarBarst R.J. Rubin L.J. Long W.A. et al.

A comparison of continuous intravenous epoprostenol (prostacyclin) with conventional therapy for primary pulmonary hypertension.

N Engl J Med. 1996; 334: 296-301View in Article Scopus (0) PubMed Crossref Google ScholarMcLaughlin V.V. Benza R.L. Rubin L.J. et al.

Addition of inhaled treprostinil to oral therapy for pulmonary arterial hypertension: a randomized controlled clinical trial.

J Am Coll Cardiol. 2010; 55: 1915-1922View in Article Scopus (427) PubMed Crossref Google ScholarGaliè N. Ghofrani H.A. Torbicki A. et al.

Sildenafil citrate therapy for pulmonary arterial hypertension.

N Engl J Med. 2005; 353: 2148-2157View in Article Scopus (2025) PubMed Crossref Google ScholarGaliè N. Brundage B.H. Ghofrani H.A. et al.

Tadalafil therapy for pulmonary arterial hypertension.

Circulation. 2009; 119: 2894-2903View in Article Scopus (839) PubMed Crossref Google ScholarSitbon O. Gomberg-Maitland M. Granton J. et al.

Clinical trial design and new therapies for pulmonary arterial hypertension.

Eur Respir J. 2019; 53https://doi.org/10.1183/13993003.01908-2018View in Article Scopus (105) Crossref Google ScholarFarina S. Correale M. Bruno N. et al.

The role of cardiopulmonary exercise tests in pulmonary arterial hypertension.

Eur Respir Rev. 2018; 27https://doi.org/10.1183/16000617.0134-2017View in Article Scopus (37) Crossref Google ScholarGaliè N. Channick R.N. Frantz R.P. et al.

Risk stratification and medical therapy of pulmonary arterial hypertension.

Eur Respir J. 2019; 53: 1801889View in Article Scopus (414) PubMed Crossref Google ScholarRoss R. Blair S.N. Arena R. et al.

Importance of assessing cardiorespiratory fitness in clinical practice: a case for fitness as a clinical vital sign: a scientific statement from the american heart association.

Circulation. 2016; 134: e653-e699View in Article Scopus (1019) PubMed Crossref Google ScholarDeboeck G. Niset G. Lamotte M. et al.

Exercise testing in pulmonary arterial hypertension and in chronic heart failure.

Eur Respir J. 2004; 23: 747-751View in Article Scopus (105) PubMed Crossref Google ScholarWasserman K. Casaburi R.

Dyspnea: physiological and pathophysiological mechanisms.

Annu Rev Med. 1988; 39: 503-515View in Article Scopus (49) PubMed Crossref Google ScholarWeatherald J. Philipenko B. Montani D. et al.

Ventilatory efficiency in pulmonary vascular diseases.

Eur Respir Rev. 2021; 30https://doi.org/10.1183/16000617.0214-2020View in Article Scopus (7) Crossref Google ScholarWeatherald J. Sattler C. Garcia G. et al.

Ventilatory response to exercise in cardiopulmonary disease: the role of chemosensitivity and dead space.

Eur Respir J. 2018; 51https://doi.org/10.1183/13993003.00860-2017View in Article Scopus (51) Crossref Google ScholarArena R. Humphrey R. Peberdy M.A.

Prognostic ability of VE/VCO2 slope calculations using different exercise test time intervals in subjects with heart failure.

Eur J Cardiovasc Prev Rehabil. 2003; 10: 463-468View in Article Scopus (38) PubMed Crossref Google ScholarSchwaiblmair M. Faul C. von Scheidt W. et al.

Ventilatory efficiency testing as prognostic value in patients with pulmonary hypertension.

BMC Pulm Med. 2012; 12: 23View in Article Scopus (72) PubMed Crossref Google ScholarMarkowitz D.H. Systrom D.M.

Diagnosis of pulmonary vascular limit to exercise by cardiopulmonary exercise testing.

J Heart Lung Transplant. 2004; 23: 88-95View in Article Scopus (40) PubMed Abstract Full Text Full Text PDF Google ScholarDantzker D.R. D’Alonzo G.E.

Pulmonary gas exchange and exercise performance in pulmonary hypertension.

CHEST. 1985; 88: 255S-257SView in Article PubMed Abstract Full Text Full Text PDF Google ScholarRobertson H.T.

Dead space: the physiology of wasted ventilation.

Eur Respir J. 2015; 45: 1704-1716View in Article Scopus (74) PubMed Crossref Google ScholarHansen J.E. Ulubay G. Chow B.F. et al.

Mixed-expired and end-tidal CO 2 distinguish between ventilation and perfusion defects during exercise testing in patients with lung and heart diseases.

Chest. 2007; 132: 977-983View in Article Scopus (78) PubMed Abstract Full Text Full Text PDF Google ScholarHoeper M.M. Pletz M.W. Golpon H. et al.

Prognostic value of blood gas analyses in patients with idiopathic pulmonary arterial hypertension.

Eur Respir J. 2007; 29: 944-950View in Article Scopus (130) PubMed Crossref Google ScholarCiarka A. Vachièry J.L. Houssière A. et al.

Atrial septostomy decreases sympathetic overactivity in pulmonary arterial hypertension.

Chest. 2007; 131: 1831-1837View in Article Scopus (64) PubMed Abstract Full Text Full Text PDF Google ScholarUlrich S. Hasler E.D. Saxer S. et al.

Effect of breathing oxygen-enriched air on exercise performance in patients with precapillary pulmonary hypertension: randomized, sham-controlled cross-over trial.

Eur Heart J. 2017; 38: 1159-1168View in Article Scopus (44) PubMed Crossref Google ScholarBaba R. Nagashima M. Goto M. et al.

Oxygen uptake efficiency slope: a new index of cardiorespiratory functional reserve derived from the relation between oxygen uptake and minute ventilation during incremental exercise.

J Am Coll Cardiol. 1996; 28: 1567-1572View in Article Scopus (290) PubMed Crossref Google ScholarTan X. Yang W. Guo J. et al.

Usefulness of decrease in oxygen uptake efficiency to identify gas exchange abnormality in patients with idiopathic pulmonary arterial hypertension.

PLoS One. 2014; 9: e98889View in Article Scopus (16) PubMed Crossref Google ScholarRamos R.P. Ota-Arakaki J.S. Alencar M.C. et al.

Exercise oxygen uptake efficiency slope independently predicts poor outcome in pulmonary arterial hypertension.

Eur Respir J. 2014; 43: 1510-1512View in Article Scopus (9) PubMed Crossref Google ScholarLuo Q. Yu X. Zhao Z. et al.

The value of cardiopulmonary exercise testing in the diagnosis of pulmonary hypertension.

J Thorac Dis. 2021; 13: 178-188View in Article Scopus (3) Crossref Google ScholarJiang R. Liu H. Pudasaini B. et al.

Characteristics of cardiopulmonary exercise testing of patients with borderline mean pulmonary artery pressure.

Clin Respir J. 2019; 13: 148-158View in Article Scopus (2) Crossref Google ScholarHigashi A. Dohi Y. Yamabe S. et al.

Evaluation of end-tidal CO2 pressure at the anaerobic threshold for detecting and assessing pulmonary hypertension.

Heart Vessels. 2017; 32: 1350-1357View in Article Scopus (1)

留言 (0)

沒有登入
gif