Cost-effective treatment for deep-vein thrombosis in rural tertiary care hospital
Arunkumar Arasappa1, Nirmal Kumar1, M Anto2, GV Manoharan2, Duraipandian Selvanathan2
1 Department of Cardiothoracic and Vascular Surgery, Sri Manakula Vinayagar Medical College and Hospital, Puducherry, India
2 Department of General Surgery, Sri Manakula Vinayagar Medical College and Hospital, Puducherry, India
Correspondence Address:
Arunkumar Arasappa
Department of Cardiothoracic and Vascular Surgery, Sri Manakula Vinayagar Medical College and Hospital, Puducherry
India
Source of Support: None, Conflict of Interest: None
CheckDOI: 10.4103/ijves.ijves_23_22
Objective: The aim was to compare the cost of treating deep-vein thrombosis (DVT) using unfractionated heparin (UFH) and low-molecular-weight heparin (LMWH) among patients in rural tertiary care hospitals. Materials and Methods: A retrospective study was conducted at a Rural Tertiary Care Hospital from April 2017 to April 2019. Fifty-four patients who had symptoms of swelling of the unilateral or bilateral lower limb with or without pain were subjected to Padua prediction score and Doppler study of both lower limbs. Confirmed cases of DVT were treated with UFH or LMWH. The cost of these two treatments was compared. Results: The mean cost of heparin was 2493.33 ± 1406.27 Indian rupee (INR) in the study population. The mean cost of LMWH was 13,520 ± 9806.35 (INR) in the study population. There was a statistically significant difference between UFH and LMWH with regard to the cost of drugs (INR) for treatment (P < 0.001), which indicated that UFH was a cost-effective treatment compared to LMWH. Conclusions: The study's findings prove that UFH is a cost-effective treatment compared to LMWH in Rural Tertiary Care Hospitals for DVT. Based on the patient's affordability, the treatment decision can be made.
Keywords: Cost effectiveness, deep-vein thrombosis, heparin, low-molecular-weight heparin
Deep-vein thrombosis (DVT) is one of the common vascular diseases causing morbidity and mortality.[1] DVT is defined as the development of thrombosis within the deep veins of the pelvis or lower limbs.[2] Vessel endothelium injury causes sluggish blood flow, which promotes blood clot formation and thereby reducing the venous blood flow, and in complicated cases can result in pulmonary embolism as the thrombi dislodge from the deep veins and move to the lungs through the vascular system.[3] DVT causes a substantial financial burden on the health-care system as well as the patients. This burden of cost is due to its acute episodes, long-term morbidities, frequent recurrence, and overall loss of patient productivity.[4],[5] Venous thromboembolism (VTE) is one of the preventable causes of morbidity and death in hospitalized patients, especially in intensive care units. Almost 25% of all VTE patients are associated with hospitalization,[6],[7] and 50%–75% in hospitalized patients occur in those in the medical wards.[8],[9]
Unfractionated heparin (UFH) is less expensive but must be given at least twice daily, whereas low-molecular-weight heparins (LMWHs) and fondaparinux are more costly but can be given once daily.[10] All three agents are effective in reducing the risk of VTE in randomized trials.[11] DVT is usually seen in patients who have sedentary habits, obesity, prolonged bedridden states, following major orthopedic, or gynecology surgery (after prolonged surgery duration). DVT can also occur in patients receiving chemotherapy for malignant conditions, renal failure, and in patients with coagulation disorders such as protein C and protein S deficiency. The fundamental pharmacological approach in patients with DVT is to start with parenteral anticoagulants, either LMWH or UFH, followed by long-term Vitamin K antagonists. Beginning parenteral anticoagulation in the acute phase is recommended before diagnostic tests for intermediate to high-risk DVT patients.[12]
In the United States, DVT is associated with a projected initial hospitalization cost of $9805.[13] Daily mean expenditure accounts for $1594 for the initial episodes,[14] and an estimated annual cost for treatment ranging from $4.9 to $7.5 billion.[15] There is no study available from India to date on the cost of DVT treatment. Hence, this study was conducted to fill in this lacuna and to compare the treatment cost of UFH with LMWH among patients admitted to Rural Tertiary Care Hospitals.
Materials and MethodsParticipants and study design
This retrospective study was undertaken in the Department of Cardiovascular and Thoracic Surgery in a Rural Tertiary Care Hospital from April 2017 to April 2019. Ethical approval was obtained from the Institutional Ethics Committee, and data confidentiality was maintained. All patients who had symptoms of swelling of the unilateral or bilateral lower limb with or without pain were subjected to Padua prediction scoring and bilateral lower limb Doppler studies. Patients with a confirmed diagnosis of DVT of the lower limb were included in the study. These patients were treated either with UFH or with LMWH.
The patient was treated with UFH 5000 IU IV 6th hourly and monitored with activated partial thromboplastin time (aPTT). The aPTT was kept at two and half times the control value to achieve the therapeutic level. The patient was started with orally acting direct anticoagulants tablet dabigatran 110 mg BD after 48 h of beginning heparin following the standard protocol. The patient's lower limb elevation with pillows was followed. We never used Thrombo-Embolus Deterrent stockings for established cases of DVT. The patient was not mobilized for at least 7 days except for routine purposes. Ultrasound Doppler was repeated on the 7th day of starting the injectable heparin. If the patient had only partially recanalized venous lumen, the dose was continued for 3 more days. If lumen was fully not recanalized, the dose was continued for a further 7 days. All patients were continued with tablet dabigatran for 6 months, even after recanalization to achieve full luminal clearance of thrombus. UFH was used for maximum period of 7 days (extended in cases to achieve partial lumen clearance) by which time clot resolution usually starts. Only 10 pts received the extended period of UFH for more than 15 days. Its usual practice to start dabigatran after starting heparin and is used as a continuation drug to prevent relapses. Prolonged heparin usage is not recommended in any protocol and has its own complications and hence the usage of dabigatran. The cost of the treatments was collected from the hospital database and compared. The grouping of the patients was done based on the financial ability of the patient to afford care. Due to this reason, there is unequal distribution of patients in both the study arms.
Sample size calculation
The sample size was calculated assuming the expected mean and standard deviation of the cost of the drug in UFH as/, σ1(7830.8, 500) and in the low molecular weight, heparin as/, σ0(8373.1, 500), as per the previous study by Ahmad et al.[16] Power of study 90% and 5% two-sided alpha error were considered. Formula, as proposed by Kirkwood, was used for calculation.[17] The required sample size as per the above-mentioned calculation and considering the 2:1 ratio was 28 and 14 in Group 1 and Group 2, respectively. To account for a nonparticipation rate/loss to follow up rate of about 10%, another two subjects for Group 1 and one subject for Group 2 were added to the sample size. Hence, the final required sample size was 30 and 15 in Group 1 and Group 2, respectively.
Statistical methods
The cost of heparin was considered as the primary outcome variable. Type of heparin and duration of hospital stay was considered as primary explanatory variables. Mean and standard deviation was done for descriptive. Independent sample t-test (2 Groups) was used for comparison. For nonnormally-distributed quantitative parameters, medians and interquartile range were compared between the study groups using the Mann–Whitney U-test (2 Groups). Statistical significance was taken with a P < 0.05. coGuide was used for the statistical analysis.[18]
ResultsThe final analysis included 54 patients.
[Table 1] depicts the two study groups and the patient distribution, which shows that the majority (72.23%) of the patients were treated with UFH, and 27.77% were treated with LMWH.
There was no statistically significant difference in mean age (in years) between the type of heparin (P > 0.05). The difference in the proportion of different age groups between the types of heparin was found to be insignificant, with a P = 0.850. The majority of 17 (43.58%) people aged between 41 and 60 years were on injection enoxaparin. The difference in the proportion of males and females between the types of heparin was insignificant with the P = 0.636 with the majority of 21 (53.84%) male participants on heparin 7 (46.67%) males were on injection enoxaparin. The difference in the proportion of duration of hospital stay between the types of heparin was found to be insignificant with the P = 0.794 [Table 2].
Table 2: Comparison of the demographic parameter between the type of heparin (n=54)There was a statistically significant difference between heparin and LMWH with regard to the cost of drugs Indian rupee (INR) for treatment [P < 0.001, [Table 3]].
Table 3: Comparison of cost between heparin and injection enoxaparin (n=54)As the cost price of UFH and LMWH varies with various brands of it, only an approximate value could be used for evaluation. On an average, UFH was costing 800 Rs./day and LMWH was costing us 1400 Rs./day. The cost was calculated based on a duration of 7–10 days on an average in both the arms and was statistically significant.
DiscussionThis retrospective study on 54 patients with DVT showed that heparin (2493.33 ± 1406.27 INR) was a cost-effective treatment for DVT when compared to LMWH (13,520 ± 9806.35 INR). Among the 54 patients studied, the majority were in the age group of 41–60 years. The duration of hospital stay ranged from 6 to 16 days.
The LMWHs show superior effectiveness over UFH in many clinical settings, and specifically in the management of DVT. LMWHs also cause fewer adverse effects; they are less likely to produce heparin-induced thrombocytopenia and bleeding manifestations. The high procurement costs of LMWHs in developing countries are compensated by reduced costs for monitoring and decreased costs of management of adverse effects.[19]
Both UFH and LMWHs have recognized roles in the prevention and treatment of VTE and as adjuvant therapy for atherothrombotic syndromes.[20],[21] LMWHs are replacing UFH for therapeutic anticoagulation due to several advantages, such as a more predictable pharmacokinetic profile and ease of use.[22],[23] Even though their antithrombotic effects are similar, the LMWHs are heterogeneous compounds produced by different processes and have distinct biochemical and pharmacological properties.[24] This diversity among the LMWHs has important implications for clinical practice. The continual pressure on pharmacy budgets has resulted in initiatives to reduce costs by switching to the lowest price. A randomized controlled trial on the efficacy of UFH versus LMWH in thrombo-prophylaxis by Ishi et al.[25] shows low doses UFH is as effective as LMWH as a prophylactic agent for VTE in medically ill patients.
A cost-effectiveness study by Gordois et al.,[10] on patients undergoing orthopedic surgeries on heparin, showed that compared to enoxaparin, fondaparinux was cost-effective to the patient as well as the health-care system. Fondaparinux saved 27 euros/patient in 5 years. Therefore, by comparing with enoxaparin, Fondaparinux was a cost-effective strategy.[10] A similar study among Serbian patients revealed that enoxaparin was a cost-effective strategy (from 5322.97 Serbia and Montenegro dinars [CSD]) per quality-adjusted life-year gained when used in outpatients, to 10,929.76 CSD per quality-adjusted life-year gained when used in inpatients).[26]
Similar to these studies, the current study also shows that the UFH is more cost-effective in low-resource settings compared to LMWH. Hence, the UFH can be used as a cost-effective method without any compromise in the therapeutic properties. The limitation of the current study is that it is a single-center experience in a relatively small sample. Multicentric studies involving various tiers of hospital settings are recommended in the future.
ConclusionsThis study showed that UFH is a cost-effective drug compared to LMWH. Hence, in resource-poor settings such as in India, UFH can be used effectively to treat DVT.
Acknowledgments
We acknowledge the technical support in data entry, analysis, and manuscript editing by “Evidencian Research Associates.”
Financial support and sponsorship
Nil.
Conflicts of interest
There are no conflicts of interest.
References
留言 (0)