Executive function elevated by long term high-intensity physical activity and the regulation role of beta-band activity in human frontal region

Abedpoor N, Taghian F, Hajibabaie F (2022) Physical activity ameliorates the function of organs via adipose tissue in metabolic diseases. Acta Histochem 124(2):151844

Article  CAS  PubMed  Google Scholar 

Aguirre-Loaiza H, Arenas J, Arias I et al (2019) Effect of acute physical exercise on executive functions and emotional recognition: analysis of moderate to high intensity in young adults. Front Psychol. https://doi.org/10.3389/fpsyg.2019.02774

Article  PubMed  PubMed Central  Google Scholar 

Ahmed HM, Blaha MJ, Nasir K et al (2012) Effects of physical activity on cardiovascular disease. Am J Cardiol 109(2):288–295

Article  PubMed  Google Scholar 

Alvarez JA, Emory E (2006) Executive function and the frontal lobes: a meta-analytic review. Neuropsychol Rev 16(1):17–42

Article  PubMed  Google Scholar 

Androulidakis AG, Doyle LMF, Yarrow K et al (2007) Anticipatory changes in beta synchrony in the human corticospinal system and associated improvements in task performance. Eur J Neurosci. https://doi.org/10.1111/j.1460-9568.2007.05620.x

Article  PubMed  Google Scholar 

Badre D, Nee DE (2018) Frontal cortex and the hierarchical control of behavior. Trends Cogn Sci 22(2):170–188

Article  PubMed  Google Scholar 

Batacan RB, Duncan MJ, Dalbo VJ et al (2017) Effects of high-intensity interval training on cardiometabolic health: a systematic review and meta-analysis of intervention studies. Br J Sports Med 51(6):494–503

Article  PubMed  Google Scholar 

Bell B, Percival DB, Walden AT (1993) Calculating Thomson’s spectral multitapers by inverse iteration. J Comput Graph Stat 2(1):119–130

Google Scholar 

Bull FC, Al-Ansari SS, Biddle S et al (2020) World Health Organization 2020 guidelines on physical activity and sedentary behaviour. Br J Sports Med 54(24):1451–1462

Article  PubMed  Google Scholar 

Cao Y, Li M, Haihambo N et al (2022) Oscillatory properties of class C notifiable infectious diseases in China from 2009 to 2021. Front Public Heal. https://doi.org/10.3389/fpubh.2022.903025

Article  Google Scholar 

Chakarov V, Naranjo JR, Schulte-Mönting J et al (2009) Beta-range EEG-EMG coherence with isometric compensation for increasing modulated low-level forces. J Neurophysiol. https://doi.org/10.1152/jn.91095.2008

Article  PubMed  Google Scholar 

Chan RCK, Shum D, Toulopoulou T, Chen EYH (2008) Assessment of executive functions: review of instruments and identification of critical issues. Arch Clin Neuropsychol. https://doi.org/10.1016/j.acn.2007.08.010

Article  PubMed  Google Scholar 

Cheron G, Petit G, Cheron J et al (2016) Brain oscillations in sport: toward EEG biomarkers of performance. Front Psychol. https://doi.org/10.3389/fpsyg.2016.00246

Article  PubMed  PubMed Central  Google Scholar 

Cohen ML, Boulton AJ, Lanzi AM et al (2021) Psycholinguistic features, design attributes, and respondent-reported cognition predict response time to patient-reported outcome measure items. Qual Life Res. https://doi.org/10.1007/s11136-021-02778-5

Article  PubMed  PubMed Central  Google Scholar 

Conway BA, Halliday DM, Farmer SF et al (1995) Synchronization between motor cortex and spinal motoneuronal pool during the performance of a maintained motor task in man. J Physiol. https://doi.org/10.1113/jphysiol.1995.sp021104

Article  PubMed  PubMed Central  Google Scholar 

Cooper RN (2006) Living with global imbalances: A contrarian view. J Policy Model. https://doi.org/10.1016/j.jpolmod.2006.06.007

Article  Google Scholar 

Cristofori I, Cohen-Zimerman S, Grafman J (2019) Executive functions. Handb Clin Neurol 163:197–219

Article  PubMed  Google Scholar 

Davis CL, Tomporowski PD, McDowell JE et al (2011) Exercise improves executive function and achievement and alters brain activation in overweight children: a randomized, controlled trial. Heal Psychol. https://doi.org/10.1037/a0021766

Article  Google Scholar 

De Greeff JW, Hartman E, Mullender-Wijnsma MJ et al (2016) Long-term effects of physically active academic lessons on physical fitness and executive functions in primary school children. Health Educ Res. https://doi.org/10.1093/her/cyv102

Article  PubMed  Google Scholar 

Donoghue JP, Sanes JN, Hatsopoulos NG, Gaál G (1998) Neural discharge and local field potential oscillations in primate motor cortex during voluntary movements. J Neurophysiol. https://doi.org/10.1152/jn.1998.79.1.159

Article  PubMed  Google Scholar 

Ellemberg D, St-Louis-Deschênes M (2010) The effect of acute physical exercise on cognitive function during development. Psychol Sport Exerc. https://doi.org/10.1016/j.psychsport.2009.09.006

Article  Google Scholar 

Erickson KI, Gildengers AG, Butters MA (2013) Physical activity and brain plasticity in late adulthood. Dialogues Clin Neurosci. https://doi.org/10.31887/dcns.2013.15.1/kerickson

Article  PubMed  PubMed Central  Google Scholar 

Farah BQ, Ritti-Dias RM, Balagopal P et al (2014) Does exercise intensity affect blood pressure and heart rate in obese adolescents? A 6-month multidisciplinary randomized intervention study. Pediatr Obes. https://doi.org/10.1111/j.2047-6310.2012.00145.x

Article  PubMed  Google Scholar 

Gandevia SC (2001) Spinal and supraspinal factors in human muscle fatigue. Physiol Rev 81(4):1725–1789. https://doi.org/10.1152/physrev.2001.81.4.1725

Gil D, Carrier B, Fullmer WB et al (2021) Validity of average heart rate and energy expenditure in polar OH1 and Verity sense while self-paced running. Int J Exerc Sci 14:83

Google Scholar 

Han C, Guo M, Ke X et al (2022a) Oscillatory biomarkers of autism: evidence from the innate visual fear evoking paradigm. Cogn Neurodyn. https://doi.org/10.1007/s11571-022-09839-6

Article  PubMed  Google Scholar 

Han C, Li M, Haihambo N et al (2021a) Enlightenment on oscillatory properties of 23 class B notifiable infectious diseases in the mainland of China from 2004 to 2020. PLoS ONE 16:e0252803

Article  CAS  PubMed  PubMed Central  Google Scholar 

Han C, Shapley R, Xing D (2021b) Gamma rhythms in the visual cortex: functions and mechanisms. Cogn Neurodyn. https://doi.org/10.1007/s11571-021-09767-x

Article  PubMed  PubMed Central  Google Scholar 

Han C, Wang T, Wu Y et al (2021c) The generation and modulation of distinct gamma oscillations with local, horizontal, and feedback connections in the primary visual cortex: a model study on large-scale networks. Neural Plast 2021:8874516

Article  PubMed  PubMed Central  Google Scholar 

Han C, Wang T, Wu Y et al (2022b) Compensatory mechanism of attention-deficit/hyperactivity disorder recovery in resting state alpha rhythms. Front Comput Neurosci. https://doi.org/10.3389/fncom.2022.883065

Article  PubMed  PubMed Central  Google Scholar 

Han C, Wang T, Yang Y et al (2021d) Multiple gamma rhythms carry distinct spatial frequency information in primary visual cortex. PLoS Biol. https://doi.org/10.1371/journal.pbio.3001466

Article  PubMed  PubMed Central  Google Scholar 

Han C, Zhao X, Li M et al (2022c) Enhancement of the neural response during 40 Hz auditory entrainment in closed-eye state in human prefrontal region. Cogn Neurodyn. https://doi.org/10.1007/s11571-022-09834-x

Article  PubMed  Google Scholar 

Hanson JS, Tabakin BS, Lecy AM, Nedde W (1968) Long-term physical training and cardiovascular dynamics in middle-aged men. Circulation. https://doi.org/10.1161/01.cir.38.4.783

Article  PubMed  Google Scholar 

Hettiarachchi IT, Hanoun S, Nahavandi D, Nahavandi S (2019) Validation of Polar OH1 optical heart rate sensor for moderate and high intensity physical activities. PLoS ONE. https://doi.org/10.1371/journal.pone.0217288

Article  PubMed  PubMed Central  Google Scholar 

Ito S (2019) High-intensity interval training for health benefits and care of cardiac diseases—the key to an efficient exercise protocol. World J Cardiol. https://doi.org/10.4330/wjc.v11.i7.171

Article  PubMed  PubMed Central  Google Scholar 

Janssen I, LeBlanc AG (2010) Systematic review of the health benefits of physical activity and fitness in school-aged children and youth. Int J Behav Nutr Phys Act 7(1):1–16

Article  Google Scholar 

Joyce J, Graydon J, McMorris T, Davranche K (2009) The time course effect of moderate intensity exercise on response execution and response inhibition. Brain Cogn. https://doi.org/10.1016/j.bandc.2009.03.004

Article  PubMed  Google Scholar 

Kamijo K, Takeda Y (2010) Regular physical activity improves executive function during task switching in young adults. Int J Psychophysiol. https://doi.org/10.1016/j.ijpsycho.2010.01.002

Article  PubMed  Google Scholar 

Kanosue K, Nagami T, Tsuchiya J (2015) Sports performance. Springer, Japan

Book  Google Scholar 

Kim M, Kim J, Park K, et al (2021) Comparison of wristband type devices to measure heart rate variability for mental stress assessment. In: International conference on ICT Convergence. https://doi.org/10.1109/ICTC52510.2021.9620772

Lautenschlager NT, Cox KL, Ellis KA (2019) Physical activity for cognitive health: what advice can we give to older adults with subjective cognitive decline and mild cognitive impairment? Dialogues Clin Neurosci. https://doi.org/10.31887/dcns.2019.21.1/nlautenschlager

Article  PubMed  PubMed Central  Google Scholar 

Leocani L, Toro C, Manganotti P et al (1997) Event-related coherence and event-related desynchronization/synchronization in the 10 Hz and 20 Hz EEG during self- paced movements. Electroencephalogr Clin Neurophysiol Evoked Potentials. https://doi.org/10.1016/S0168-5597(96)96051-7

Article  PubMed  Google Scholar 

Ma J, Chen H, Liu X et al (2018) Exercise-induced fatigue impairs bidirectional corticostriatal synaptic plasticity. Front Cell Neurosci. https://doi.org/10.3389/fncel.2018.00014

Article  P

留言 (0)

沒有登入
gif